245 resultados para COMPUTER SCIENCE, THEORY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Premature convergence to local optimal solutions is one of the main difficulties when using evolutionary algorithms in real-world optimization problems. To prevent premature convergence and degeneration phenomenon, this paper proposes a new optimization computation approach, human-simulated immune evolutionary algorithm (HSIEA). Considering that the premature convergence problem is due to the lack of diversity in the population, the HSIEA employs the clonal selection principle of artificial immune system theory to preserve the diversity of solutions for the search process. Mathematical descriptions and procedures of the HSIEA are given, and four new evolutionary operators are formulated which are clone, variation, recombination, and selection. Two benchmark optimization functions are investigated to demonstrate the effectiveness of the proposed HSIEA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a method for measuring the creative potential of computer games. The research approach applies a behavioral and verbal protocol to analyze the factors that influence the creative processes used by people as they play computer games from the puzzle genre. Creative potential is measured by examining task motivation and domain-relevant and creativity-relevant skills. This paper focuses on the reliability of the factors used for measurement, determining those factors that are more strongly related to creativity. The findings show that creative potential may be determined by examining the relationship between skills required and the effect of intrinsic motivation within game play activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a combined structure for using real, complex, and binary valued vectors for semantic representation. The theory, implementation, and application of this structure are all significant. For the theory underlying quantum interaction, it is important to develop a core set of mathematical operators that describe systems of information, just as core mathematical operators in quantum mechanics are used to describe the behavior of physical systems. The system described in this paper enables us to compare more traditional quantum mechanical models (which use complex state vectors), alongside more generalized quantum models that use real and binary vectors. The implementation of such a system presents fundamental computational challenges. For large and sometimes sparse datasets, the demands on time and space are different for real, complex, and binary vectors. To accommodate these demands, the Semantic Vectors package has been carefully adapted and can now switch between different number types comparatively seamlessly. This paper describes the key abstract operations in our semantic vector models, and describes the implementations for real, complex, and binary vectors. We also discuss some of the key questions that arise in the field of quantum interaction and informatics, explaining how the wide availability of modelling options for different number fields will help to investigate some of these questions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Constant development of new wireless standards increases the demand for more radiating elements in compact end-user platforms. A decrease in antenna separation gives rise to increased antenna coupling, resulting in a reduction of the signal-to-interference-plus-noise-ratio (SINR) between transmitter and receiver. This paper proposes a decoupling network which provides dual band port isolation for a pair of distinct antennas. A prototype has been fabricated to verify the theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies dedicated to understanding the relationship between gaming and mental health, have traditionally focused on the effects of depression, anxiety, obsessive usage, aggression, obesity, and faltering â˜real lifeâ relationships. The complexity of game genre and personality aside, this review aims to define a space for a positive relationship between videogame play and wellbeing by applying current videogame research to the criteria that defines the wellbeing construct â˜flourishingâ. Self- determination theory (SDT), and flow provide context, and areas of overlap are explored.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chatrooms, for example Internet Relay Chat, are generally multi-user, multi-channel and multiserver chat-systems which run over the Internet and provide a protocol for real-time text-based conferencing between users all over the world. While a well-trained human observer is able to understand who is chatting with whom, there are no efficient and accurate automated tools to determine the groups of users conversing with each other. A precursor to analysing evolving cyber-social phenomena is to first determine what the conversations are and which groups of chatters are involved in each conversation. We consider this problem in this paper. We propose an algorithm to discover all groups of users that are engaged in conversation. Our algorithms are based on a statistical model of a chatroom that is founded on our experience with real chatrooms. Our approach does not require any semantic analysis of the conversations, rather it is based purely on the statistical information contained in the sequence of posts. We improve the accuracy by applying some graph algorithms to clean the statistical information. We present some experimental results which indicate that one can automatically determine the conversing groups in a chatroom, purely on the basis of statistical analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean gliders constitute an important advance in the highly demanding ocean monitoring scenario. Their effciency, endurance and increasing robustness make these vehicles an ideal observing platform for many long term oceanographic applications. However, they have proved to be also useful in the opportunis-tic short term characterization of dynamic structures. Among these, mesoscale eddies are of particular interest due to the relevance they have in many oceano-graphic processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complex Internet attacks may come from multiple sources, and target multiple networks and technologies. Nevertheless, Collaborative Intrusion Detection Systems (CIDS) emerges as a promising solution by using information from multiple sources to gain a better understanding of objective and impact of complex Internet attacks. CIDS also help to cope with classical problems of Intrusion Detection Systems (IDS) such as zero-day attacks, high false alarm rates and architectural challenges, e. g., centralized designs exposing the Single-Point-of-Failure. Improved complexity on the other hand gives raise to new exploitation opportunities for adversaries. The contribution of this paper is twofold. We first investigate related research on CIDS to identify the common building blocks and to understand vulnerabilities of the Collaborative Intrusion Detection Framework (CIDF). Second, we focus on the problem of anonymity preservation in a decentralized intrusion detection related message exchange scheme. We use techniques from design theory to provide multi-path peer-to-peer communication scheme where the adversary can not perform better than guessing randomly the originator of an alert message.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Internet chatrooms are common means of interaction and communications, and they carry valuable information about formal or ad-hoc formation of groups with diverse objectives. This work presents a fully automated surveillance system for data collection and analysis in Internet chatrooms. The system has two components: First, it has an eavesdropping tool which collects statistics on individual (chatter) and chatroom behavior. This data can be used to profile a chatroom and its chatters. Second, it has a computational discovery algorithm based on Singular Value Decomposition (SVD) to locate hidden communities and communication patterns within a chatroom. The eavesdropping tool is used for fine tuning the SVD-based discovery algorithm which can be deployed in real-time and requires no semantic information processing. The evaluation of the system on real data shows that (i) statistical properties of different chatrooms vary significantly, thus profiling is possible, (ii) SVD-based algorithm has up to 70-80% accuracy to discover groups of chatters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reasoning with uncertain knowledge and belief has long been recognized as an important research issue in Artificial Intelligence (AI). Several methodologies have been proposed in the past, including knowledge-based systems, fuzzy sets, and probability theory. The probabilistic approach became popular mainly due to a knowledge representation framework called Bayesian networks. Bayesian networks have earned reputation of being powerful tools for modeling complex problem involving uncertain knowledge. Uncertain knowledge exists in domains such as medicine, law, geographical information systems and design as it is difficult to retrieve all knowledge and experience from experts. In design domain, experts believe that design style is an intangible concept and that its knowledge is difficult to be presented in a formal way. The aim of the research is to find ways to represent design style knowledge in Bayesian net works. We showed that these networks can be used for diagnosis (inferences) and classification of design style. The furniture design style is selected as an example domain, however the method can be used for any other domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work identifies the limitations of n-way data analysis techniques in multidimensional stream data, such as Internet chat room communications data, and establishes a link between data collection and performance of these techniques. Its contributions are twofold. First, it extends data analysis to multiple dimensions by constructing n-way data arrays known as high order tensors. Chat room tensors are generated by a simulator which collects and models actual communication data. The accuracy of the model is determined by the Kolmogorov-Smirnov goodness-of-fit test which compares the simulation data with the observed (real) data. Second, a detailed computational comparison is performed to test several data analysis techniques including svd [1], and multi-way techniques including Tucker1, Tucker3 [2], and Parafac [3].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work investigates the accuracy and efficiency tradeoffs between centralized and collective (distributed) algorithms for (i) sampling, and (ii) n-way data analysis techniques in multidimensional stream data, such as Internet chatroom communications. Its contributions are threefold. First, we use the Kolmogorov-Smirnov goodness-of-fit test to show that statistical differences between real data obtained by collective sampling in time dimension from multiple servers and that of obtained from a single server are insignificant. Second, we show using the real data that collective data analysis of 3-way data arrays (users x keywords x time) known as high order tensors is more efficient than centralized algorithms with respect to both space and computational cost. Furthermore, we show that this gain is obtained without loss of accuracy. Third, we examine the sensitivity of collective constructions and analysis of high order data tensors to the choice of server selection and sampling window size. We construct 4-way tensors (users x keywords x time x servers) and analyze them to show the impact of server and window size selections on the results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider Cooperative Intrusion Detection System (CIDS) which is a distributed AIS-based (Artificial Immune System) IDS where nodes collaborate over a peer-to-peer overlay network. The AIS uses the negative selection algorithm for the selection of detectors (e.g., vectors of features such as CPU utilization, memory usage and network activity). For better detection performance, selection of all possible detectors for a node is desirable but it may not be feasible due to storage and computational overheads. Limiting the number of detectors on the other hand comes with the danger of missing attacks. We present a scheme for the controlled and decentralized division of detector sets where each IDS is assigned to a region of the feature space. We investigate the trade-off between scalability and robustness of detector sets. We address the problem of self-organization in CIDS so that each node generates a distinct set of the detectors to maximize the coverage of the feature space while pairs of nodes exchange their detector sets to provide a controlled level of redundancy. Our contribution is twofold. First, we use Symmetric Balanced Incomplete Block Design, Generalized Quadrangles and Ramanujan Expander Graph based deterministic techniques from combinatorial design theory and graph theory to decide how many and which detectors are exchanged between which pair of IDS nodes. Second, we use a classical epidemic model (SIR model) to show how properties from deterministic techniques can help us to reduce the attack spread rate.