263 resultados para Bacterial infection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a spatiotemporal mathematical model of chlamydial infection, host immune response and spatial movement of infectious particles. The re- sulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous chlamydia modelling by incorporating spatial change, which we also demonstrate to be essential when the timescale for movement of infectious particles is equal to, or shorter than, the developmental cycle timescale. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis is a major cause of sexually transmitted diseases worldwide. There currently is no vaccine to protect against chlamydial infection of the female reproductive tract. Vaccine development has predominantly involved using the murine model, however infection of female guinea pigs with Chlamydia caviae more closely resembles chlamydial infection of the human female reproductive tract, and presents a better model to assess potential human chlamydial vaccines. We immunised female guinea pigs intranasally with recombinant major outer membrane protein (r-MOMP) combined with CpG-10109 and cholera toxin adjuvants. Both systemic and mucosal immune responses were elicited in immunised animals. MOMP-specific IgG and IgA were present in the vaginal mucosae, and high levels of MOMP-specific IgG were detected in the serum of immunised animals. Antibodies from the vaginal mucosae were also shown to be capable of neutralising C. caviae in vitro. Following immunisation, animals were challenged intravaginally with a live C. caviae infection of 102 inclusion forming units. We observed a decrease in duration of infection and a significant (p<0.025) reduction in infection load in r-MOMP immunised animals, compared to animals immunised with adjuvant only. Importantly, we also observed a marked reduction in upper reproductive tract (URT) pathology in r-MOMP immunised animals. Intranasal immunisation of female guinea pigs with r-MOMP was able to provide partial protection against C. caviae infection, not only by reducing chlamydial burden but also URT pathology. This data demonstrates the value of using the guinea pig model to evaluate potential chlamydial vaccines for protection against infection and disease pathology caused by C. trachomatis in the female reproductive tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are approximately 92 million new chlamydial infections of the genital tract in humans diagnosed each year, costing health care systems billions of dollars in treatment not only of acute infections, but also of associated inflammatory sequelae, such as pelvic inflammatory disease (PID) and ectopic pregnancy. These numbers are increasing at a steady rate and, due to the asymptomatic nature of infections, the incidence may be underestimated and the costs of treatment therefore higher. Over the previous few decades there has been a large amount of research into the development of an efficacious vaccine against genital tract chlamydial infections. The majority of this research has focused on females, due to the high rate of development of associated diseases, including PID, which can lead to ectopic pregnancy and infertility. In light of the increasing infection rates that have occurred despite the availability of antibiotics, and the asymptomatic nature of chlamydial infections, it is imperative that an efficacious vaccine that protects against infection and associated pathology be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infertility is a worldwide health problem with one in six couples suffering from this condition and with a major economic burden on the global healthcare industry. Estimates of the current global infertility rate suggest that 15% of couples are infertile (Zegers-Hochschild et al 2009) defined as: (1) failure to conceive after 12 months of unprotected sexual intercourse (i.e. infertility); (2) repeated implantation failure following ART cycles; or (3) recurrent miscarriage without difficulty conceiving (natural conceptions). Tubal factor infertility is among the leading causes of female factor infertility accounting for 7-9.8% of all female factor infertilities. Tubal disease directly causes from 36% to 85% of all cases of female factor infertility in developed and developing nations respectively and is associated with polymicrobial aetiologies. One of the leading global causes of tubal factor infertility is thought to be symptomatic (and asymptomatic in up to 70% cases) infection of the female reproductive tract with the sexually transmitted pathogen, Chlamydia trachomatis. Infection-related damage to the Fallopian tubes caused by Chlamydia accounts for more than 70% of cases of infertility in women from developing nations such as sub-Saharan Africa (Sharma et al 2009). Bacterial vaginosis, a condition associated with increased transmission of sexually transmitted infections including those caused by Neisseria gonorrhoeae and Mycoplasma genitalium is present in two thirds of women with pelvic inflammatory disease (PID). This review will focus on (1) the polymicrobial aetiologies of tubal factor infertility and (2) studies involved in screening for, and treatment and control of, Chlamydial infection to prevent PID and the associated sequelae of Fallopian tube inflammation that may lead to infertility and ectopic pregnancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron (Fe) biogeochemistry is potentially of environmental significance in plantation-forested, subtropical coastal ecosystems where soil disturbance and seasonal water logging may lead to elevation of Fe mobilization and associated water quality deterioration. Using wet-chemical extraction and laboratory cultivation, we examined the occurrence of Fe forms and associated bacterial populations in diverse soils of a representative subtropical Australian coastal catchment (Poona Creek). Total reactive Fe was abundant throughout 0e30 cm soil cores, consisting primarily of crystalline forms in well-drained sand soils and water-logged loam soils, whereas in water-logged, low clay soils, over half of total reactive Fe was present in poorly-crystalline forms due to organic and inorganic complexation, respectively. Forestry practices such as plantation clear-felling and replanting, seasonal water logging and mineral soil properties significantly impacted soil organic carbon (C), potentially-bioavailable Fe pools and densities of S-, but not Fe-, bacterial populations. Bacterial Fe(III) reduction and abiotic Fe(II) oxidation, as well as chemolithotrophic S oxidation and aerobic, heterotrophic respiration were integral to catchment terrestrial FeeC cycling. This work demonstrates bacterial involvement in terrestrial Fe cycling in a subtropical coastal circumneutral-pH ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae causes a range of respiratory infections including bronchitis, pharyngitis and pneumonia. Infection has also been implicated in exacerbation/initiation of asthma and chronic obstructive pulmonary disease (COPD) and may play a role in atherosclerosis and Alzheimer's disease. We have used a mouse model of Chlamydia respiratory infection to determine the effectiveness of intranasal (IN) and transcutaneous immunization (TCI) to prevent Chlamydia lung infection. Female BALB/c mice were immunized with chlamydial major outer membrane protein (MOMP) mixed with cholera toxin and CpG oligodeoxynucleotide adjuvants by either the IN or TCI routes. Serum and bronchoalveolar lavage (BAL) were collected for antibody analysis. Mononuclear cells from lung-draining lymph nodes were stimulated in vitro with MOMP and cytokine mRNA production determined by real time PCR. Animals were challenged with live Chlamydia and weighed daily following challenge. At day 10 (the peak of infection) animals were sacrificed and the numbers of recoverable Chlamydia in lungs determined by real time PCR. MOMP-specific antibody-secreting cells in lung tissues were also determined at day 10 post-infection. Both IN and TCI protected animals against weight loss compared to non-immunized controls with both immunized groups gaining weight by day 10-post challenge while controls had lost 6% of body weight. Both immunization protocols induced MOMP-specific IgG in serum and BAL while only IN immunization induced MOMP-specific IgA in BAL. Both immunization routes resulted in high numbers of MOMP-specific antibody-secreting cells in lung tissues (IN > TCI). Following in vitro re-stimulation of lung-draining lymph node cells with MOMP; IFNγ mRNA increased 20-fold in cells from IN immunized animals (compared to non-immunized controls) while IFNγ levels increased 6- to 7-fold in TCI animals. Ten days post challenge non-immunized animals had >7000 IFU in their lungs, IN immunized animals <50 IFU and TCI immunized animals <1500 IFU. Thus, both intranasal and transcutaneous immunization protected mice against respiratory challenge with Chlamydia. The best protection was obtained following IN immunization and correlated with IFNγ production by mononuclear cells in lung-draining LN and MOMP-specific IgA in BAL.