24 resultados para GSTT1


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione transferases are known to be important enzymes in the metabolism of xenobiotics. In humans genetic polymorphisms have been reported for the hGSTM1 and hGSTT1 genes leading to individual differences in susceptibility towards toxic effects, such as cancer. This study describes the distribution of the two polymorphisms of hGSTT1 and hGSTM1 in the normal Chinese population of Shanghai. Out of 219 healthy individuals having been genotyped for GSTTI and GSTMI, 108 (49%) were identified to be homozygously deficient for the GSTT1 gene and 107 (49%) for the GSTM1 gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genotype distributions for GSTP1, GSTM1, and GSTT1 were determined in 91 patients with prostatic carcinoma and 135 patients with bladder carcinoma and compared with those in 127 abdominal surgery patients without malignancies. None of the genotypes differed significantly with respect to age or sex among controls or cancer patients. In the group of prostatic carcinoma patients, GSTT1 null allele homozygotes were more prevalent (25% in carcinoma patients vs 13% in controls, Fisher P=0.02, χ2 P = 0.02, OR = 2.31, CI = 1.17-4.59) and the combined M1-/T1-null genotype was also more frequent (9% vs 3%, χ2 P= 0.02, Fisher P = 0.03). Homozygosity for the GSTM1 null allele was more frequent among bladder carcinoma patients (59% in bladder carcinoma patients vs 45% in controls, Fisher P = 0.03, χ2 P = 0.02, OR = 1.76, CI = 1.08-2.88). In contrast to a previous report, no significant increase in the frequency of the GSTP1b allele was found in the tumor patients. Except for the combined GSTM1-/T1-null genotype in prostatic carcinoma, none of the combined genotypes showed a significant association with either of the cancers. These findings suggest that specific single polymorphic GST genes, that is GSTM1 in the case of bladder cancer and GSTT1 in the case of prostatic carcinoma, are most relevant for the development of these urological malignancies among the general population in Central Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cohort of 59 persons with industrial handling of low levels of acrylonitrile is being studied as part of a medical surveillance programme. Previously, an extended haemoglobin adduct monitoring (N-(cyanoethyl)valine and N-(hydroxyethyl)-valine) was performed regarding the glutathione transferases hGSTM1 and hGSTT1 polymorphisms but no influence of hGSTM1 or hGSTT1 polymorphisms on specific adduct levels was found. A compilation of case reports of human accidental poisonings had pointed to significant individual differences in human acrylonitrile metabolism and toxicity. Therefore, a re-evaluation of the industrial cohort included known polymorphisms of the glutathione transferases hGSTM3 and hGSTP1 as well as of the cytochrome P450 CYP2E1. A detailed statistical analysis revealed that exposed carriers of the allelic variants of hGSTP1, hGSTP1*B/hGSTP1*C, characterized by a single nucleotide polymorphism at nucleotide 313 which results in a change from Ile to Val at codon 104, had higher levels of the acrylonitrile-specific haemoglobin adduct N-(cyanoethyl)valine compared to the carriers of the codon 113 alleles hGSTP1*A and hGSTP1*D. The single nucleotide polymorphism at codon 113 of hGSTP1 (hGSTP1*A/hGSTP1*B versus hGSTP1*C/hGSTP1*D) did not show an effect, and also no influence was seen on specific haemoglobin adduct levels of the polymorphisms of hGSTM3 or CYP2E1. The data, therefore, point to a possible influence of a human enzyme polymorphism of the GSTP1 gene at codon 104 on the detoxication of acrylonitrile which calls for experimental toxicological investigation. The study also confirmed the impact of GSTT1 polymorphism on background N-(hydroxyethyl)-valine adduct levels in haemoglobin which are caused by endogenous ethylene oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol consumption and tobacco smoking are major causes of head and neck cancers, and regional differences point to the importance of research into gene-environment interactions. Much interest has been focused on polymorphisms of CYP1A1 and of GSTM1 and GSTT1, but a number of studies have not demonstrated significant effects. This has mostly been ascribed to small sample sizes. In general, the impact of polymorphisms of metabolic enzymes appears inconsistent, with some reports of weak-to-moderate associations, and with others of no elevation of risks. The classical cytochrome P450 isoenzyme considered for metabolic activation of polycyclic aromatic hydrocarbons (PAH) is CYP1A1. A new member of the CYP1 family, CYP1B1, was cloned in 1994, currently representing the only member of the CYP1B subfamily. A number of single nucleotide polymorphisms of the CYP1B1 gene have been reported. The amino acid substitutions Val432Leu (CYP1B1*3) and Asn453Ser (CYP1B1*4), located in the heme binding domain of CYP1B1, appear as likely candidates to be linked with biological effects. CYP1B1 activates a wide range of PAH, aromatic and heterocyclic amines. Very recently, the CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squamous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has pointed to interactive effects. This provides new molecular evidence that tobacco smoke-specific compounds relevant to head and neck carcinogenesis are metabolically activated through CYP1B1 and is consistent with a major pathogenetic relevance of PAH as ingredients of tobacco smoke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rat theta class glutathione S-transferase (GST) 5-5 has been shown to affect the mutagenicity of halogenated alkanes and epoxides. In Salmonella typhimurium TA1535 expressing the rat GST5-5 the number of revertants was increased compared to the control strain by CH2Br2, ethylene dibromide (EDB) and 1,2,3,4-diepoxybutane (BDE); in contrast, mutagenicity of 1,2-epoxy-3-(4'-nitrophenoxy)propane (EPNP) was reduced. S.typhimurium TA1535 cells were transformed with an expression plasmid carrying the cDNA of the human theta ortholog GST1-1 either in sense or antisense orientation, the latter being the control. These transformed bacteria were utilized for mutagenicity assays. Mutagenicity of EDB, BDE, CH2Br2, epibromohydrin and 1,3-dichloroacetone was higher in the S.typhimurium TA1535 expressing GSTT1-1 than in the control strain. The expression of active enzyme did not affect the mutagenicity of 1,2-epoxy-3-butene or propylene oxide, GSTT1-1 expression reduced the mutagenicity of EPNP. Glutathione S-transferase 5-5 and GSTT1-1 modulate genotoxicity of several industrially important chemicals in the same way. Polymorphism of the GSTT1 locus in humans may therefore cause differences in cancer susceptibility between the two phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transformation of ethylene oxide (EO), propylene oxide (PO) and 1- butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO >> 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr >> EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione transferases (GSTs) catalyzing the conjugation of glutathione with electrophilic substrates are important enzymes in the metabolism of xenobiotics. Several isozymes exhibit polymorphisms in humans. The two deletion polymorphisms of hGSTM1 and hGSTT1 result in total loss of enzyme activity in homozygous null genotype (GSTM1*0 and GSTT1*0 respectively) individuals (Seidegård et al. 1988; Pemble et al. 1994). Individuals that are heterozygous for hGSTT1 show distinctly lower enzyme activities than individuals carrying two functional alleles of hGSTT1 (Wiebel et al. 1996). A similar effect is conceivable for the hGSTM1 polymorphism but has not been verified so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method has been developed for the quantification of 2-hydroxyethylated cysteine resulting as adduct in blood proteins after human exposure to ethylene oxide, by reversed-phase HPLC with fluorometric detection. The specific adduct is analysed in albumin and in globin. After isolation of albumin and globin from blood, acid hydrolysis of the protein and precolumn derivatisation of the digest with 9-fluorenylmethoxycarbonylchloride, the levels of derivatised S-hydroxyethylcysteine are analysed by RP-HPLC and fluorescence detection, with a detection limit of 8 nmol/g protein. Background levels of S-hydroxyethylcysteine were quantified in both albumin and globin, under special consideration of the glutathione transferase GSTT1 and GSTM1 polymorphisms. GSTT1 polymorphism had a marked influence on the physiological background alkylation of cysteine. While S-hydroxyethylcysteine levels in "non-conjugators" were between 15 and 50 nmol/g albumin, "low conjugators" displayed levels between 8 and 21 nmol/g albumin, and "high conjugators" did not show levels above the detection limit. The human GSTM1 polymorphism had no apparent effect on background levels of blood protein 2-hydroxyethylation.