134 resultados para Biotechnology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenic members of the picornavirus superfamily have adverse effects on humans, their crops and their livestock. As structure is related to function, detailed structural studies on these viruses are important not only for fundamental understanding of the viral life cycle, but also for the rational design of vaccines and inhibitors for disease control. These viruses have positive sense, single-stranded RNA genomes enclosed in a protein capsid. X-ray crystallography and cryo-electron microscopy studies have revealed that the isometric members of this group have icosahedrally-symmetric capsids made up of 60 copies of each of the structural proteins. The members that infect animal cells often employ one or more cellular receptors to facilitate cell entry which in some cases is known to initiate the uncoating sequence of the genome. The nature of the interactions between individual viruses and alternative cellular receptors has rarely been probed. The capsid assembly of the members of the picornavirus superfamily is considered to be cooperative and the interactions of RNA and capsid proteins are thought to play an important role in orchestrating virus assembly. The major aims of this thesis were to solve the structures of blackcurrant reversion virus (BRV), human parechovirus 1 (HPEV1) and coxsackievirus A7 (CAV7), as well as the structure of HPEV1 complexed with two of its cellular receptors using cryo-electron microscopy, three-dimensional image reconstruction and homology modeling. Each of the selected viruses represents a taxonomic group where little or no structural data was previously available. The results enabled the detailed comparison of the new structures to those of known picornaviruses, the identification of surface-exposed epitopes potentially important for host interaction, the mapping of RNA-capsid protein interactions and the elucidation of the basis for the specificity of two different receptor molecules for the same capsid. This work will form the basis for further studies on the influence of RNA on parechovirus assembly as a potential target for drug design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to examine how transformation is defining feminist bioethics and to determine the nature of this transformation. Behind the quest for transformation is core feminism and its political implications, namely, that women and other marginalized groups have been given unequal consideration in society and the sciences and that this situation is unacceptable and should be remedied. The goal of the dissertation is to determine how feminist bioethicists integrate the transformation into their respective fields and how they apply the potential of feminism to bioethical theories and practice. On a theoretical level, feminist bioethicists wish to reveal how current ways of knowing are based on inequality. Feminists pay special attention especially to communal and political contexts and to the power relations endorsed by each community. In addition, feminist bioethicists endorse relational ethics, a relational account of the self in which the interconnectedness of persons is important. On the conceptual level, feminist bioethicists work with beliefs, concepts, and practices that give us our world. As an example, I examine how feminist bioethicists have criticized and redefined the concept of autonomy. Feminist bioethicists emphasize relational autonomy, which is based on the conviction that social relationships shape moral identities and values. On the practical level, I discuss stem cell research as a test case for feminist bioethics and its ability to employ its methodologies. Analyzing these perspectives allowed me first, to compare non-feminist and feminist accounts of stem cell ethics and, second, to analyze feminist perspectives on the novel biotechnology. Along with offering a critical evaluation of the stem cell debate, the study shows that sustainable stem cell policies should be grounded on empirical knowledge about how donors perceive stem cell research and the donation process. The study indicates that feminist bioethics should develop the use of empirical bioethics, which takes the nature of ethics seriously: ethical decisions are provisional and open for further consideration. In addition, the study shows that there is another area of development in feminist bioethics: the understanding of (moral) agency. I argue that agency should be understood to mean that actions create desires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alphaviruses are positive strand RNA viruses that replicate in association with cellular membranes. The viral RNA replication complex consists of four non-structural proteins nsP1-nsP4 which are essential for viral replication. The functions of nsP1, nsP2 and nsP4 are well established, but the roles of nsP3 are mainly unknown. In this work I have clarified some of the functions of nsP3 in order to better understand the importance of this protein in virus replication. Semliki Forest virus (SFV) has been mostly used as a model alphavirus during this work, but some experiments have also been conducted with Sindbis and Chikungunya viruses. NsP3 is composed of three different protein domains. The N-terminus of nsP3 contains an evolutionarily conserved macrodomain, the central part of nsP3 contains a domain that is only found in alphaviruses, and the C-terminus of the protein is hypervariable and predicted to be unstructured. In this work I have analyzed the functions of nsP3 macrodomain, and shown that viral macrodomains bind poly(ADP-ribose) and that they do not resemble cellular macrodomains in their properties. Furthermore, I have shown that some macrodomains, including viral macrodomains of SFV and hepatitis E virus, also bind poly(A). Mutations in the ligand binding pocket of SFV macrodomain hamper virus replication but do not confer lethality, indicating that macrodomain function is beneficial but not mandatory for virus replication. The hypervariable C-terminus of nsP3 is heavily phosphorylated and is enriched in proline residues. In this work it is shown that this region harbors an SH3 domain binding motif (Sh3BM) PxRxPR through which cellular amphiphysin is recruited to viral replication sites and to nsP3 containing cytoplasmic aggregate structures. The function of Sh3BM was destroyed by a single point mutation, which led to impaired viral RNA replication in HeLa cells, pointing out the functional importance of amphiphysin recruitment by the Sh3BM. In addition, evidence is provided tho show that the endosomal localization of alphavirus replication is mediated by nsP3 and that the phosphorylation of hypervariable region might be important for the endosomal targeting. Together these findings demonstrate that nsP3 contains multiple important host interaction motifs and domains, which facilitate successful viral propagation in host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actin stress fibers are dynamic structures in the cytoskeleton, which respond to mechanical stimuli and affect cell motility, adhesion and invasion of cancer cells. In nonmuscle cells, stress fibers have been subcategorized to three distinct stress fiber types: dorsal and ventral stress fibers and transverse arcs. These stress fibers are dissimilar in their subcellular localization, connection to substratum as well as in their dynamics and assembly mechanisms. Still uncharacterized is how they differ in their function and molecular composition. Here, I have studied involvement of nonmuscle alpha-actinin-1 and -4 in regulating distinct stress fibers as well as their localization and function in human U2OS osteosarcoma cells. Except for the correlation of upregulation of alpha-actinin-4 in invasive cancer types very little is known about whether these two actinins are redundant or have specific roles. The availability of highly specific alpha-actinin-1 antibody generated in the lab, revealed localization of alpha-actinin-1 along all three categories of stress fibers while alphaactinin-4 was detected at cell edge, distal ends of stress fibers as well as perinuclear regions. Strikingly, by utilizing RNAi-mediated gene silencing of alpha-actinin-1 resulted in specific loss of dorsal stress fibers and relocalization of alpha-actinin-4 to remaining transverse arcs and ventral stress fibers. Unexpectedly, aberrant migration was not detected in cells lacking alpha-actinin-1 even though focal adhesions were significantly smaller and fewer. Whereas, silencing of alpha-actinin-4 noticeably affected overall cell migration. In summary, as part of my master thesis study I have been able to demonstrate distinct localization and functional patterns for both alpha-actinin-1 and -4. I have identified alpha-actinin-1 to be a selective dorsal stress fiber crosslinking protein as well as to be required for focal adhesion maturation, while alpha-actinin-4 was demonstrated to be fundamental for cell migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traumatic insults to the central nervous system are frequently followed by profound and irreversible neuronal loss as well as the inability of the damaged neurons to regenerate. One of the major therapeutic challenges is to increase the amount of surviving neurons after trauma. Thus it is crucial to understand how injury affects neuronal responses and which conditions are optimal for survival to prevent neuronal loss. During development neuronal survival is thought to be dependent on the competition for the availability of survival-promoting molecules called neurotrophic factors. Much less is known on the survival mechanisms of mature neurons under traumatic conditions. Increasing amount of evidence points towards the possibility that after injury neuronal responses might aquire some developmental characteristics. One of the important examples is the change in the responses to the neurotransmitter GABA: it is inhibitory in the intact mature neurons, but can induce excitation during development and after trauma. An important step in the maturation of GABAergic transmission in the CNS is the developmental shift in the action of GABAA receptor from depolarization in immature neurons to hyperpolarization in mature neurons. GABAA-mediated responses are tightly linked to the homeostasis of the chloride anion (Cl-), which in neurons is mainly regulated by Na+-K+-2Cl- cotransporter NKCC1 and K+-Cl- cotransporter KCC2. Trauma-induced functional downregulation of KCC2 promotes a shift from hyperpolarizing GABAA-mediated responses to depolarizing. Other important consequences of neuronal trauma are the emergence of dependency of central neurons on brain-derived neuro¬trophic factor (BDNF) for survival, as well as the upregulation of neurotrophin receptor p75NTR. Our aim was to answer the question whether these post-traumatic events are interrelated, and whether the regulation of BDNF and KCC2 expression is different under traumatic conditions and in intact neurons. To study responses of injured mature central neurons, we used an in vitro and in vivo axotomy models. For in vitro studies, we lesioned organotypic hippocampal slices between CA3 and CA1 regions, which resulted in selective axotomy of the CA3 neurons and denervation of the CA1 neurons. Some experiments were repeated in vivo by lesioning the neurons of the corticospinal tract at the internal capsule level, or by lesioning spinal motoneurons at the ventral root. We show that intact mature neurons do not require BDNF for survival, whereas in axotomized neurons apoptosis is induced upon BDNF deprivation. We further show that post-traumatic dependency on BDNF is mediated by injury-induced upregulation of p75NTR. Post-traumatic increase in p75NTR is induced by GABAA-mediated depolarization, consequent opening of voltage-gated Ca2+ channels, and the activation of Rho kinase ROCK. Thus, post-traumatic KCC2 downregulation leads to the dependency on BDNF through the induction of p75NTR upregulation. Neurons that survive after axotomy over longer period of time lose BDNF dependency and regain normal KCC2 levels. This phenomenon is promoted by BDNF itself, since after axotomy contrary to normal conditions KCC2 is upregulated by BDNF. The developmentally important thyroid hormone thyroxin regulates BDNF expression during development. We show that in mature intact neurons thyroxin downregulates BDNF, whereas after axotomy thyroxin upregulates BDNF. The elevation of BDNF expression by thyroxin promoted survival of injured neurons. In addition, thyroxin also enhanced axonal regeneration and promoted the regaining of normal levels of KCC2. Thus we show that this hormone acts at several levels on the axotomy-initiated chain of events described in the present work, and could be a potential therapeutic agent for the injured neurons. We have also characterized a previously unknown downregulatory interaction between thyroxin and KCC2 in intact neurons. In conclusion, we identified several important interactions at the neurotrophin-protein and hormone-neurotrophin level that acquire immature-like characteristics after axotomy and elucidated an important part of the mechanism by which axotomy leads to the requirement of BDNF trophic support. Based on these findings, we propose a new potential therapeutic strategy where developmentally crucial agents could be used to enhance survival and regeneration of axotomized mature central neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuronal cell adhesion molecule ICAM-5 ICAM-5 (telencephalin) belongs to the intercellular adhesion molecule (ICAM)-subgroup of the immunoglobulin superfamily (IgSF). ICAMs participate in leukocyte adhesion and adhesion-dependent functions in the central nervous system (CNS) through interacting with the leukocyte-specific b2 integrins. ICAM-5 is found in the mammalian forebrain, appears at the time of birth, and is located at the cell soma and neuronal dendrites. Recent studies also show that it is important for the regulation of immune functions in the brain and for the development and maturation of neuronal synapses. The clinical importance of ICAM-5 is still under investigation; it may have a role in the development of Alzheimer s disease (AD). In this study, the role of ICAM-5 in neuronal differentiation and its associations with a-actinin and N-methyl-D-aspartic acid (NMDA) receptors were examined. NMDA receptors (NMDARs) are known to be involved in many neuronal functions, including the passage of information from one neuron to another one, and thus it was thought important to study their role related to ICAM-5. The results suggested that ICAM-5 was able to induce dendritic outgrowth through homophilic adhesion (ICAM-5 monomer binds to another ICAM-5 monomer in the same or neighbouring cell), and the homophilic binding activity appeared to be regulated by monomer/multimer transition. Moreover, ICAM-5 binding to a-actinin was shown to be important for neuritic outgrowth. It was examined whether matrix metalloproteinases (MMPs) are the main enzymes involved in ICAM-5 ectodomain cleavage. The results showed that stimulation of NMDARs leads to MMP activation, cleavage of ICAM-5 and it is accompanied by dendritic spine maturation. These findings also indicated that ICAM-5 and NMDA receptor subunit 1 (NR1) compete for binding to a-actinin, and ICAM-5 may regulate the NR1 association with the actin cytoskeleton. Thus, it is concluded that ICAM-5 is a crucial cell adhesion molecule involved in the development of neuronal synapses, especially in the regulation of dendritic spine development, and its functions may also be involved with memory formation and learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene expression is one of the most critical factors influencing the phenotype of a cell. As a result of several technological advances, measuring gene expression levels has become one of the most common molecular biological measurements to study the behaviour of cells. The scientific community has produced enormous and constantly increasing collection of gene expression data from various human cells both from healthy and pathological conditions. However, while each of these studies is informative and enlighting in its own context and research setup, diverging methods and terminologies make it very challenging to integrate existing gene expression data to a more comprehensive view of human transcriptome function. On the other hand, bioinformatic science advances only through data integration and synthesis. The aim of this study was to develop biological and mathematical methods to overcome these challenges and to construct an integrated database of human transcriptome as well as to demonstrate its usage. Methods developed in this study can be divided in two distinct parts. First, the biological and medical annotation of the existing gene expression measurements needed to be encoded by systematic vocabularies. There was no single existing biomedical ontology or vocabulary suitable for this purpose. Thus, new annotation terminology was developed as a part of this work. Second part was to develop mathematical methods correcting the noise and systematic differences/errors in the data caused by various array generations. Additionally, there was a need to develop suitable computational methods for sample collection and archiving, unique sample identification, database structures, data retrieval and visualization. Bioinformatic methods were developed to analyze gene expression levels and putative functional associations of human genes by using the integrated gene expression data. Also a method to interpret individual gene expression profiles across all the healthy and pathological tissues of the reference database was developed. As a result of this work 9783 human gene expression samples measured by Affymetrix microarrays were integrated to form a unique human transcriptome resource GeneSapiens. This makes it possible to analyse expression levels of 17330 genes across 175 types of healthy and pathological human tissues. Application of this resource to interpret individual gene expression measurements allowed identification of tissue of origin with 92.0% accuracy among 44 healthy tissue types. Systematic analysis of transcriptional activity levels of 459 kinase genes was performed across 44 healthy and 55 pathological tissue types and a genome wide analysis of kinase gene co-expression networks was done. This analysis revealed biologically and medically interesting data on putative kinase gene functions in health and disease. Finally, we developed a method for alignment of gene expression profiles (AGEP) to perform analysis for individual patient samples to pinpoint gene- and pathway-specific changes in the test sample in relation to the reference transcriptome database. We also showed how large-scale gene expression data resources can be used to quantitatively characterize changes in the transcriptomic program of differentiating stem cells. Taken together, these studies indicate the power of systematic bioinformatic analyses to infer biological and medical insights from existing published datasets as well as to facilitate the interpretation of new molecular profiling data from individual patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All protein-encoding genes in eukaryotes are transcribed into messenger RNA (mRNA) by RNA Polymerase II (RNAP II), whose activity therefore needs to be tightly controlled. An important and only partially understood level of regulation is the multiple phosphorylations of RNAP II large subunit C-terminal domain (CTD). Sequential phosphorylations regulate transcription initiation and elongation, and recruit factors involved in co-transcriptional processing of mRNA. Based largely on studies in yeast models and in vitro, the kinase activity responsible for the phosphorylation of the serine-5 (Ser5) residues of RNAP II CTD has been attributed to the Mat1/Cdk7/CycH trimer as part of Transcription Factor IIH. However, due to the lack of good mammalian genetic models, the roles of both RNAP II Ser5 phosphorylation as well as TFIIH kinase in transcription have provided ambiguous results and the in vivo kinase of Ser5 has remained elusive. The primary objective of this study was to elucidate the role of mammalian TFIIH, and specifically the Mat1 subunit in CTD phosphorylation and general RNAP II-mediated transcription. The approach utilized the Cre-LoxP system to conditionally delete murine Mat1 in cardiomyocytes and hepatocytes in vivo and and in cell culture models. The results identify the TFIIH kinase as the major mammalian Ser5 kinase and demonstrate its requirement for general transcription, noted by the use of nascent mRNA labeling. Also a role for Mat1 in regulating general mRNA turnover was identified, providing a possible rationale for earlier negative findings. A secondary objective was to identify potential gene- and tissue-specific roles of Mat1 and the TFIIH kinase through the use of tissue-specific Mat1 deletion. Mat1 was found to be required for the transcriptional function of PGC-1 in cardiomyocytes. Transriptional activation of lipogenic SREBP1 target genes following Mat1 deletion in hepatocytes revealed a repressive role for Mat1apparently mediated via co-repressor DMAP1 and the DNA methyltransferase Dnmt1. Finally, Mat1 and Cdk7 were also identified as a negative regulators of adipocyte differentiation through the inhibitory phosphorylation of Peroxisome proliferator-activated receptor (PPAR) γ. Together, these results demonstrate gene- and tissue-specific roles for the Mat1 subunit of TFIIH and open up new therapeutic possibilities in the treatment of diseases such as type II diabetes, hepatosteatosis and obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embryonic stem cells offer potentially a ground-breaking insight into health and diseases and are said to offer hope in discovering cures for many ailments unimaginable few years ago. Human embryonic stem cells are undifferentiated, immature cells that possess an amazing ability to develop into almost any body cell such as heart muscle, bone, nerve and blood cells and possibly even organs in due course. This remarkable feature, enabling embryonic stem cells to proliferate indefinitely in vitro (in a test tube), has branded them as a so-called miracle cure . Their potential use in clinical applications provides hope to many sufferers of debilitating and fatal medical conditions. However, the emergence of stem cell research has resulted in intense debates about its promises and dangers. On the one hand, advocates hail its potential, ranging from alleviating and even curing fatal and debilitating diseases such as Parkinson s, diabetes, heart ailments and so forth. On the other hand, opponents decry its dangers, drawing attention to the inherent risks of human embryo destruction, cloning for research purposes and reproductive cloning eventually. Lately, however, the policy battles surrounding human embryonic stem cell innovation have shifted from being a controversial research to scuffles within intellectual property rights. In fact, the ability to obtain patents represents a pivotal factor in the economic success or failure of this new biotechnology. Although, stem cell patents tend to more or less satisfy the standard patentability requirements, they also raise serious ethical and moral questions about the meaning of the exclusions on ethical or moral grounds as found in European and to an extent American and Australian patent laws. At present there is a sort of a calamity over human embryonic stem cell patents in Europe and to an extent in Australia and the United States. This in turn has created a sense of urgency to engage all relevant parties in the discourse on how best to approach patenting of this new form of scientific innovation. In essence, this should become a highly favoured patenting priority. To the contrary, stem cell innovation and its reliance on patent protection risk turmoil, uncertainty, confusion and even a halt on not only stem cell research but also further emerging biotechnology research and development. The patent system is premised upon the fundamental principle of balance which ought to ensure that the temporary monopoly awarded to the inventor equals that of the social benefit provided by the disclosure of the invention. Ensuring and maintaining this balance within the patent system when patenting human embryonic stem cells is of crucial contemporary relevance. Yet, the patenting of human embryonic stem cells raises some fundamental moral, social and legal questions. Overall, the present approach of patenting human embryonic stem cell related inventions is unsatisfactory and ineffective. This draws attention to a specific question which provides for a conceptual framework for this work. That question is the following: how can the investigated patent offices successfully deal with patentability of human embryonic stem cells? This in turn points at the thorny issue of application of the morality clause in this field. In particular, the interpretation of the exclusions on ethical or moral grounds as found in Australian, American and European legislative and judicial precedents. The Thesis seeks to compare laws and legal practices surrounding patentability of human embryonic stem cells in Australia and the United States with that of Europe. By using Europe as the primary case study for lessons and guidance, the central goal of the Thesis then becomes the determination of the type of solutions available to Europe with prospects to apply such to Australia and the United States. The Dissertation purports to define the ethical implications that arise with patenting human embryonic stem cells and intends to offer resolutions to the key ethical dilemmas surrounding patentability of human embryonic stem cells and other morally controversial biotechnology inventions. In particular, the Thesis goal is to propose a functional framework that may be used as a benchmark for an informed discussion on the solution to resolving ethical and legal tensions that come with patentability of human embryonic stem cells in Australian, American and European patent worlds. Key research questions that arise from these objectives and which continuously thread throughout the monograph are: 1. How do common law countries such as Australia and the United States approach and deal with patentability of human embryonic stem cells in their jurisdictions? These practices are then compared to the situation in Europe as represented by the United Kingdom (first two chapters), the Court of Justice of the European Union and the European Patent Office decisions (Chapter 3 onwards) in order to obtain a full picture of the present patenting procedures on the European soil. 2. How are ethical and moral considerations taken into account at patent offices investigated when assessing patentability of human embryonic stem cell related inventions? In order to assess this part, the Thesis evaluates how ethical issues that arise with patent applications are dealt with by: a) Legislative history of the modern patent system from its inception in 15th Century England to present day patent laws. b) Australian, American and European patent offices presently and in the past, including other relevant legal precedents on the subject matter. c) Normative ethical theories. d) The notion of human dignity used as the lowest common denominator for the interpretation of the European morality clause. 3. Given the existence of the morality clause in form of Article 6(1) of the Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions which corresponds to Article 53(a) European Patent Convention, a special emphasis is put on Europe as a guiding principle for Australia and the United States. Any room for improvement of the European morality clause and Europe s current manner of evaluating ethical tensions surrounding human embryonic stem cell inventions is examined. 4. A summary of options (as represented by Australia, the United States and Europe) available as a basis for the optimal examination procedure of human embryonic stem cell inventions is depicted, whereas the best of such alternatives is deduced in order to create a benchmark framework. This framework is then utilised on and promoted as a tool to assist Europe (as represented by the European Patent Office) in examining human embryonic stem cell patent applications. This method suggests a possibility of implementing an institution solution. 5. Ultimately, a question of whether such reformed European patent system can be used as a founding stone for a potential patent reform in Australia and the United States when examining human embryonic stem cells or other morally controversial inventions is surveyed. The author wishes to emphasise that the guiding thought while carrying out this work is to convey the significance of identifying, analysing and clarifying the ethical tensions surrounding patenting human embryonic stem cells and ultimately present a solution that adequately assesses patentability of human embryonic stem cell inventions and related biotechnologies. In answering the key questions above, the Thesis strives to contribute to the broader stem cell debate about how and to which extent ethical and social positions should be integrated into the patenting procedure in pluralistic and morally divided democracies of Europe and subsequently Australia and the United States.