28 resultados para Antibodies, ANCA
Resumo:
To determine the potential role of flying foxes in transmission cycles of Japanese encephalitis virus (JEV) in Australia, we exposed Pteropus alecto (Megachiroptera: Pteropididae) to JEV via infected Culex annulirostris mosquitoes or inoculation. No flying foxes developed symptoms consistent with JEV infection. Anti-JEV IgG antibodies developed in 6/10 flying foxes exposed to infected Cx. annulirostris and in 5/5 inoculated flying foxes. Low-level viremia was detected by real-time reverse transcriptase polymerase chain reaction in 1/5 inoculated flying foxes and this animal was able to infect recipient mosquitoes. Although viremia was not detected in any of the 10 flying foxes that were exposed to JEV by mosquito bite, two animals infected recipient mosquitoes. Likewise, an inoculated flying fox without detectable viremia infected recipient mosquitoes. Although infection rates in recipient mosquitoes were low, the high population densities in roosting camps, coupled with migratory behavior indicate that flying foxes could play a role in the dispersal of JEV.
Resumo:
High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) is a novel technology that has emerged as a possible method to characterise leptospires to serovar level. RAPD-HRM has recently been used to measure intra-serovar convergence between strains of the same serovar as well as inter-serovar divergence between strains of different serovars. The results indicate that intra-serovar heterogeneity and inter-serovar homogeneity may limit the application of RAPD-HRM in routine diagnostics. They also indicate that genetic attenuation of aged, high-passage-number isolates could undermine the use of RAPD-HRM or any other molecular technology. Such genetic attenuation may account for a general decrease seen in titres of rabbit hyperimmune antibodies over time. Before RAPD-HRM can be further advanced as a routine diagnostic tool, strains more representative of the wild-type serovars of a given region need to be identified. Further, RAPD-HRM analysis of reference strains indicates that the routine renewal of reference collections, with new isolates, may be needed to maintain the genetic integrity of the collections.
Resumo:
Live vaccines containing attenuated parasite strains are increasingly used to control chicken coccidiosis. In this paper antibody responses elicited by infections with wild-type and attenuated strains of Eimeria tenella and E.necatrix were characterized by immunoblotting and ELISA with homologous and heterologous antisera. Few differences between antisera from birds infected with wild and attenuated strains of E. tenella were evident in immunoblots conducted with merozoite antigen preparations from both E. tenella strains, however the reactivity of sera raised in birds infected with the wild-type strain was noticeably more intense. In ELISAs conducted with merozoite antigen preparations, antisera from birds infected with the wild-type strains of E. tenella and E. necatrix consistently produced a significantly higher (P < 0.05) antibody response than antisera from birds infected with the attenuated strains. Likewise, avidity ELISAs conducted with the E. tenella strains demonstrated that antibodies in birds infected with the wild-type strain were of significantly higher avidity (P < 0.05) than antibodies in birds infected with the attenuated strain. The differences in the antibody responses are probably due to changes in the attenuated strain as a result of selection for precocious development and the less severe tissue damage and inflammation of the intestine resulting from infection with the attenuated strain.
Resumo:
No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant
Resumo:
Menangle virus (MenPV) is a zoonotic paramyxovirus capable of causing disease in pigs and humans. It was first isolated in 1997 from stillborn piglets at a commercial piggery in New South Wales, Australia, where an outbreak of reproductive disease occurred. Neutralizing antibodies to MenPV were detected in various pteropid bat species in Australia and fruit bats were suspected to be the source of the virus responsible for the outbreak in pigs. However, previous attempts to isolate MenPV from various fruit bat species proved fruitless. Here, we report the isolation of MenPV from urine samples of the black flying fox, Pteropus alecto, using a combination of improved procedures and newly established bat cell lines. The nucleotide sequence of the bat isolate is 94% identical to the pig isolate. This finding provides strong evidence supporting the hypothesis that the MenPV outbreak in pigs originated from viruses in bats roosting near the piggery. © 2012 Printed in Great Britain.
Resumo:
Nipah virus (NiV) (Genus Henipavirus) is a recently emerged zoonotic virus that causes severe disease in humans and has been found in bats of the genus Pteropus. Whilst NiV has not been detected in Australia, evidence for NiV-infection has been found in pteropid bats in some of Australia's closest neighbours. The aim of this study was to determine the occurrence of henipaviruses in fruit bat (Family Pteropodidae) populations to the north of Australia. In particular we tested the hypothesis that Nipah virus is restricted to west of Wallace's Line. Fruit bats from Australia, Papua New Guinea, East Timor and Indonesia were tested for the presence of antibodies to Hendra virus (HeV) and Nipah virus, and tested for the presence of HeV, NiV or henipavirus RNA by PCR. Evidence was found for the presence of Nipah virus in both Pteropus vampyrus and Rousettus amplexicaudatus populations from East Timor. Serology and PCR also suggested the presence of a henipavirus that was neither HeV nor NiV in Pteropus alecto and Acerodon celebensis. The results demonstrate the presence of NiV in the fruit bat populations on the eastern side of Wallace's Line and within 500 km of Australia. They indicate the presence of non-NiV, non-HeV henipaviruses in fruit bat populations of Sulawesi and Sumba and possibly in Papua New Guinea. It appears that NiV is present where P. vampyrus occurs, such as in the fruit bat populations of Timor, but where this bat species is absent other henipaviruses may be present, as on Sulawesi and Sumba. Evidence was obtained for the presence henipaviruses in the non-Pteropid species R. amplexicaudatus and in A. celebensis. The findings of this work fill some gaps in knowledge in geographical and species distribution of henipaviruses in Australasia which will contribute to planning of risk management and surveillance activities.
Resumo:
The immuno-staining patterns of skin leukocytes were investigated in three breeds of cattle: Holstein–Friesian, Brahman and Santa Gertrudis of similar age before and after tick infestation. The antibodies specific for CD45 and CD45RO reacted with cells in the skin of all Holstein–Friesian cattle but did not react with cells in the skin of any Brahman cattle. The same antibodies reacted with cells from the skin of four (CD45) and seven (CD45RO) of twelve Santa Gertrudis cattle. The antibodies specific for T cells and γδ subset of T cells recognized cells from all three breeds of cattle. The antibody specific for MHC class II molecules labelled cells of mostly irregular shape, presumably dermal dendritic cells and/or macrophages and Langerhans cells. The antibody specific for granulocytes (mAb CH138) reacted with cells only in sections cut from skin with lesions. The antibody specific for CD25+ cells labelled regularly shaped cells that showed a wide range of intensities of staining.
Resumo:
The endemic non-pathogenic Australian rabbit calicivirus RCV-A1 is known to provide some cross protection to lethal infection with the closely related Rabbit Haemorrhagic Disease Virus (RHDV). Despite its obvious negative impacts on viral biocontrol of introduced European rabbits in Australia, little is known about the extent and mechanisms of this cross protection. In this study 46 rabbits from a colony naturally infected with RCV-A1 were exposed to RHDV. Survival rates and survival times did not correlate with titres of serum antibodies specific to RCV-A1 or cross reacting to RHDV, but were instead influenced by the time between infection with the two viruses, demonstrating for the first time that the cross protection to lethal RHDV infection is transient. These findings are an important step towards a better understanding of the complex interactions of co-occurring pathogenic and non-pathogenic lagoviruses.
Resumo:
Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) ticks cause economic losses for cattle industries throughout tropical and subtropical regions of the world estimated at $US2.5 billion annually. Lack of access to efficacious long-lasting vaccination regimes and increases in tick acaricide resistance have led to the investigation of targets for the development of novel tick vaccines and treatments. In vitro tick feeding has been used for many tick species to study the effect of new acaricides on the transmission of tick-borne pathogens. Few studies have reported the use of in vitro feeding for functional genomic studies using RNA interference and/or the effect of specific anti-tick antibodies. In particular, in vitro feeding reports for the cattle tick are limited due to its relatively short hypostome. Previously published methods were further modified to broaden optimal tick sizes/weights, feeding sources including bovine and ovine serum, optimisation of commercially available blood anti-coagulant tubes, and IgG concentrations for effective antibody delivery. Ticks are fed overnight and monitored for ∼5–6 weeks to determine egg output and success of larval emergence using a humidified incubator. Lithium-heparin blood tubes provided the most reliable anti-coagulant for bovine blood feeding compared with commercial citrated (CPDA) and EDTA tubes. Although >30 mg semi-engorged ticks fed more reliably, ticks as small as 15 mg also fed to repletion to lay viable eggs. Ticks which gained less than ∼10 mg during in vitro feeding typically did not lay eggs. One mg/ml IgG from Bm86-vaccinated cattle produced a potent anti-tick effect in vitro (83% efficacy) similar to that observed in vivo. Alternatively, feeding of dsRNA targeting Bm86 did not demonstrate anti-tick effects (11% efficacy) compared with the potent effects of ubiquitin dsRNA. This study optimises R. microplus tick in vitro feeding methods which support the development of cattle tick vaccines and treatments.
Resumo:
Effective arbovirus surveillance is essential to ensure the implementation of control strategies, such as mosquito suppression, vaccination, or dissemination of public warnings. Traditional strategies employed for arbovirus surveillance, such as detection of virus or virus-specific antibodies in sentinel animals, or detection of virus in hematophagous arthropods, have limitations as an early-warning system. A system was recently developed that involves collecting mosquitoes in CO2-baited traps, where the insects expectorate virus on sugar-baited nucleic acid preservation cards. The cards are then submitted for virus detection using molecular assays. We report the application of this system for detecting flaviviruses and alphaviruses in wild mosquito populations in northern Australia. This study was the first to employ nonpowered passive box traps (PBTs) that were designed to house cards baited with honey as the sugar source. Overall, 20/144 (13.9%) of PBTs from different weeks contained at least one virus-positive card. West Nile virus Kunjin subtype (WNVKUN), Ross River virus (RRV), and Barmah Forest virus (BFV) were detected, being identified in 13/20, 5/20, and 2/20 of positive PBTs, respectively. Importantly, sentinel chickens deployed to detect flavivirus activity did not seroconvert at two Northern Territory sites where four PBTs yielded WNVKUN. Sufficient WNVKUN and RRV RNA was expectorated onto some of the honey-soaked cards to provide a template for gene sequencing, enhancing the utility of the sugar-bait surveillance system for investigating the ecology, emergence, and movement of arboviruses. © 2014, Mary Ann Liebert, Inc.
Resumo:
Background: In 2008-09, evidence of Reston ebolavirus (RESTV) infection was found in domestic pigs and pig workers in the Philippines. With species of bats having been shown to be the cryptic reservoir of filoviruses elsewhere, the Philippine government, in conjunction with the Food and Agriculture Organization of the United Nations, assembled a multi-disciplinary and multi-institutional team to investigate Philippine bats as the possible reservoir of RESTV. Methods: The team undertook surveillance of bat populations at multiple locations during 2010 using both serology and molecular assays. Results: A total of 464 bats from 21 species were sampled. We found both molecular and serologic evidence of RESTV infection in multiple bat species. RNA was detected with quantitative PCR (qPCR) in oropharyngeal swabs taken from Miniopterus schreibersii, with three samples yielding a product on conventional hemi-nested PCR whose sequences differed from a Philippine pig isolate by a single nucleotide. Uncorroborated qPCR detections may indicate RESTV nucleic acid in several additional bat species (M. australis, C. brachyotis and Ch. plicata). We also detected anti-RESTV antibodies in three bats (Acerodon jubatus) using both Western blot and ELISA. Conclusions: The findings suggest that ebolavirus infection is taxonomically widespread in Philippine bats, but the evident low prevalence and low viral load warrants expanded surveillance to elaborate the findings, and more broadly, to determine the taxonomic and geographic occurrence of ebolaviruses in bats in the region. © 2015 Jayme et al.
Resumo:
During the past 15 years, surveys to identify virus diseases affecting cool-season food legume crops in Australia and 11 CWANA countries (Algeria, China, Egypt, Ethiopia, Lebanon, Morocco, Sudan, Syria, Tunisia, Uzbekistan and Yemen) were conducted. More than 20,000 samples were collected and tested for the presence of 14 legume viruses by the tissue-blot immunoassay (TBIA) using a battery of antibodies, including the following Luteovirus monoclonal antibodies (McAbs): a broad-spectrum legume Luteovirus (5G4), BLRV, BWYV, SbDV and CpCSV. A total of 195 Luteovirus samples were selected for further testing by RT-PCR using 7 primers (one is degenerate, and can detect a wide range of Luteoviridae virus species and the other six are species-specific primers) at the Virology Laboratory, QDAF, Australia, during 2014. A total of 145 DNA fragments (represented 105 isolates) were sequenced. The following viruses were characterized based on molecular analysis: BLRV from Lebanon, Morocco, Tunisia and Uzbekistan; SbDV from Australia, Syria and Uzbekistan; BWYV from Algeria, China, Ethiopia, Lebanon, Morocco, Sudan, Tunisia and Uzbekistan; CABYV from Algeria, Lebanon, Syria, Sudan and Uzbekistan; CpCSV from Algeria, Ethiopia, Lebanon, Morocco, Syria and Tunisia, and unknown Luteoviridae species from Algeria, Ethiopia, Morocco, Sudan, Uzbekistan and Yemen. This study has clearly shown that there are a number of Polerovirus species, in addition to BWYV, all can produce yellowing/stunting symptoms in pulses (e.g. CABYV, CpCSV, and other unknown Polerovirus species). Based on our knowledge this is the first report of CABYV affecting food legumes. Moreover, there was about 95% agreement between results obtained from serological analysis (TBIA) and molecular analysis for the detection of BLRV and SbDV. Whereas, TBIA results were not accurate when using CpCSV and BWYV McAbs . It seems that the McAbs for CpCSV and BWYV used in this study and those available worldwide, are not virus species specific. Both antibodies, reacted with other Polerovirus species (e.g. CABYV, and unknown Polerovirus). This highlights the need for more accurate characterization of existing antibodies and where necessary the development of better, virus-specific antibodies to enable their use for accurate diagnosis of Poleroviruses.
Resumo:
A serological survey of cattle from throughout Queensland and sheep from cattle/sheep interface areas was conducted to determine the distribution and prevalence of antibodies to Bluetongue virus serotypes. This information allowed preliminary designation of arbovirusfree zones and identification of livestock populations at greatest risk to introduction of exotic Bluetongue viruses. Throughout the state antibodies were detected to only serotypes I and 21. In cattle prevalence decreased with increasing distance from the coast ringing from 73% in the far north to less than I% in the southwest. In sheep, prevalence of bluetongue antibodies in the major cattle/sheep interface areas in the north-west and central Queensland ranged from O% to 5%. A system of strategically placed sentinel herds of 10 young serologically negative cattle was established across northern Australia to monitor the distribution and seasonality of bluetongue viruses. Initially 23 herds were located in Queensland, 4 in Northern Territory and 2 in Western Australia but by the completion of the project the number of herds in Queensland had been reduced to 12. No bluetongue virus activity was detected in Western Australia or Northern Territory herds throughout the project although testing of one herd in Northern Territory with a history of bluetongue activity was not done after June 1991. In Queensland, activity to bluetongue serotypes I and 21 was detected in all years of the project. Transmissions occurred predominantly in the period April to September and were more widespread in wetter years' The pathogenic bluetongue setotypes previously isolated from the Northern Territory have not spread to adjoining States.