112 resultados para 770406 Integrated (ecosystem) assessment and management

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

NOAA/NCCOS is conducting the following work for the NOAA California Current Integrated Ecosystem Assessment, in support of the NOAA/NMFS Northwest Fisheries Science Center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarize the life history characteristics of silvergray rockfish (Sebastes brevispinis) based on commercial fishery data and biological samples from British Columbia waters. Silvergray rockfish occupy bottom depths of 100−300 m near the edge of the continental shelf. Within that range, they appear to make a seasonal movement from 100−200 m in late summer to 180−280 m in late winter. Maximum observed age in the data set was 81 and 82 years for females and males, respectively. Maximum length and round weight was 73 cm and 5032 g for females and 70 cm and 3430 g for males. The peak period of mating lasted from December to February and parturition was concentrated from May to July. Both sexes are 50% mature by 9 or 10 years and 90% are mature by age 16 for females and age 13 years for males. Fecundity was estimated from one sample of 132 females and ranged from 181,000 to 1,917,000 oocytes and there was no evidence of batch spawning. Infection by the copepod parasite Sarcotaces arcticus appears to be associated with lower fecundity. Sexual maturation appears to precede recruitment to the trawl fishery; thus spawning stock biomass per recruit analysis (SSB/R) indicates that a F50% harvest target would correspond to an F of 0.072, 20% greater than M (0.06). Fishery samples may bias estimates of age at maturity but a published meta-data analysis, in conjunction with fecundity data, independently supports an early age of maturity in relation to recruitment. Although delayed recruitment to the fishery may provide more resilience to exploitation, managers may wish to forego maximizing economic yield from this species. Silvergray rockfish are a relatively minor but unavoidable part of the multiple species trawl catch. Incorrectly “testing” the resilience of one species may cause it to be the weakest member of the specie

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organization of coastwide management programs for Atlantic menhaden, Brevoortia tyrannus, and Gulf menhaden, B. patronus, are described. Recent assessments of the status of the Atlantic and Gulf menhaden stocks are summarized. Estimates of population size and fishing mortalities are obtained from virtual population analysis, and are used in determining spawner-recruit relationships, spawning stock ratios, yield-per-recruit, and surplus production. Management issues are addressed in the framework of assessment results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are two groups of factors, namely fishery independent factors such as current, temperature and salinity and fishery dependent factors such as types of fishing, namely trawling, gill netting etc. with different mesh sizes and intensity of fishing indicating the number of units of each type of fishing. Hence assessment of capture fishery resources remains a puzzle even today. However, attempts have been made to develop suitable mathematical and statistical models for assessing them and for offering suggestions for judicious management of the resources. This paper indicates in brief the important characteristics of the capture fisheries, their assessment and management with particular reference to India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Venomous Indo-Pacific lionfish (Pterois miles and P. volitans) are now established along the Southeast U.S.A. and parts of the Caribbean and pose a serious threat to reef fish communities of these regions. Lionfish are likely to invade the Gulf of Mexico and potentially South America in the near future. Introductions of lionfish were noted since the 1980s along south Florida and by 2000 lionfish were established off the coast of North Carolina. Lionfish are now one of the more numerous predatory reef fishes at some locations off the Southeast U.S.A. and Caribbean. Lionfish are largely piscivores that feed occasionally on economically important reef fishes. The trophic impacts of lionfish could alter the structure of native reef fish communities and potentially hamper stock rebuilding efforts of the Snapper –Grouper Complex. Additional effects of the lionfish invasion are far-reaching and could increase coral reef ecosystem stress, threaten human health, and ultimately impact the marine aquarium industry. Control strategies for lionfish are needed to mitigate impacts, especially in protected areas. This integrated assessment provides a general overview of the biology and ecology of lionfish including genetics, taxonomy, reproductive biology, early life history and dispersal, venom defense and predation, and feeding ecology. In addition, alternative management actions for mitigating the negative impacts of lionfish, approaches for reducing the risk of future invasions, and directions for future research are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted in June 2009 to assess the current status of ecological condition and potential human-health risks throughout subtidal estuarine waters of the Sapelo Island National Estuarine Research Reserve (SINERR) along the coast of Georgia. Samples were collected for multiple indicators of ecosystem condition, including water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids, fecal coliform bacteria and coliphages), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundance of benthic fauna, fish tissue contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). Use of a probabilistic sampling design facilitated the calculation of statistics to estimate the spatial extent of the Reserve classified according to various categories (i.e., Good, Fair, Poor) of ecological condition relative to established thresholds of these indicators, where available. Overall, the majority of subtidal habitat in the SINERR appeared to be healthy, with over half (56.7 %) of the Reserve area having water quality, sediment quality, and benthic biological condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. None of the stations sampled had one or more indicators in all three categories rated as poor/degraded. While these results are encouraging, it should be noted that one or more indicators were rated as poor/degraded in at least one of the three categories over 40% of the Reserve study area, represented by 12 of the 30 stations sampled. Although measures of fish tissue chemical contamination were not included in any of the above estimates, a number of trace metals, pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) were found at low yet detectable levels in some fish at stations where fish were caught. Levels of mercury and total PCBs in some fish specimens fell within EPA guideline values considered safe, given a consumption rate of no more than four fish meals per month. Moreover, PCB congener profiles in sediments and fish in the SINERR exhibit a relative abundance of higher-chlorinated homologs which are uniquely characteristic of Aroclor 1268. It has been well-documented that sediments and fish in the creeks and marshes near the LCP Chemicals Superfund site, near Brunswick, Georgia, also display this congener pattern associated with Aroclor 1268, a highly chlorinated mixture of PCBs used extensively at a chlor-alkali plant that was in operation at the LCP site from 1955-1994. This report provides results suggesting that the protected habitats lying within the boundaries of the SINERR may be experiencing the effects of a legacy of chemical contamination at a site over 40km away. These effects, as well as other potential stressors associated with increased development of nearby coastal areas, underscore the importance of establishing baseline ecological conditions that can be used to track potential changes in the future and to guide management and stewardship of the otherwise relatively unspoiled ecosystems of the SINERR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tortugas Integrated Biogeographic Assessment presents a unique analysis of demographic changes in living resource populations, as well as societal and socioeconomic benefits that resulted from the Tortugas Ecological Reserves during the first five years after their implementation. In 2001, state and federal agencies established two no-take reserves within the region as part of the Florida Keys National Marine Sanctuary. The northern reserve (Tortugas Ecological Reserve North) was established adjacent to the Dry Tortugas National Park, which was first declared a national monument in 1935. The reserves were designed to protect a healthy coral reef ecosystem that supports diverse faunal assemblages and fisheries, serves as important spawning grounds for groupers and snappers, and includes essential feeding and breeding habitats for seabirds. The unique ecological qualities of the Tortugas region were recognized as far back as 1850, and it remains an important ecosystem and research area today. The two main goals of the Tortugas Ecological Reserve Integrated Ecological Assessment were: 1) to determine if demographic changes such as increases in abundance, average size and spawning potential of exploited populations occurred in the Tortugas region after reserve implementation; and 2) whether short-term economic losses occurred to fishers displaced by the reserve. This project utilized a biogeographic approach in which information on the physical features (i.e., habitat) and oceanographic patterns were first used to determine the spatial distribution of selected fish populations within and outside the Tortugas Ecological Reserve. Before-and-after reserve implementation comparisons of selected fish populations were then conducted to determine if demographic changes occurred in reef fish assemblages. These comparisons were done for the Tortugas region and also for a subset of available habitats within the Tortugas Ecological Reserve Study Area. Social and economic impacts of the reserves were determined through: 1) analyses of commercial landings and revenues from fishers, operating in the Tortugas region before and after reserve implementation and 2) surveys of recreational tour guides. Analyses of the commercial landings and revenues excluded areas inside Dry Tortugas National Park because commercial fishing has been prohibited within park boundaries since 1992. Key findings and outcomes of this integrated ecological assessment are organized by chapter and listed below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In both developed and developing countries, there is increased competition for water resources, resulting in deficiencies in supply and in various forms of pollution. In developing countries, the nutritional potential of aquatic resources is very important. To realize this potential, integrated research and management for sustainable water resource use are needed. This requires a sound understanding of the structure and function of aquatic ecosystems. A programme is presented which stresses the interrelationships of the physical, chemical and biological components of aquatic systems and their catchments. The programme consists of 16 stages in 5 phases, which are as follows: System description; System functioning and modelling; Resource assessment/dynamics; Resource potential; and, Resource utilization for sustainability. This programme enables workers within different disciplines to identify how their expertise contributes to the overall research requirements to support resource development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental managers strive to preserve natural resources for future generations but have limited decision-making tools to define ecosystem health. Many programs offer relevant broad-scale, environmental policy information on regional ecosystem health. These programs provide evidence of environmental condition and change, but lack connections between local impacts and direct effects on living resources. To address this need, the National Oceanic and Atmospheric Administration/National Ocean Service (NOAA/NOS) Cooperative Oxford Laboratory (COL), in cooperation with federal, state, and academic partners, implemented an integrated biotic ecosystem assessment on a sub-watershed 14-digit Hydrologic Unit Code (HUD) scale in Chesapeake Bay. The goals of this effort were to 1) establish a suite of bioindicators that are sensitive to ecosystem change, 2) establish the effects of varying land-use patterns on water quality and the subsequent health of living resources, 3) communicate these findings to local decision-makers, and 4) evaluate the success of management decisions in these systems. To establish indicators, three sub-watersheds were chosen based on statistical analysis of land-use patterns to represent a gradient from developed to agricultural. The Magothy (developed), Corsica (agricultural), and Rhode (reference) Rivers were identified. A random stratified design was developed based on depth (2m contour) and river mile. Sampling approaches were coordinated within this structure to allow for robust system comparisons. The sampling approach was hierarchal, with metrics chosen to represent a range from community to cellular level responses across multiple organisms. This approach allowed for the identification of sub-lethal stressors, and assessment of their impact on the organism and subsequently the population. Fish, crabs, clams, oysters, benthic organisms, and bacteria were targeted, as each occupies a separate ecological niche and may respond dissimilarly to environmental stressors. Particular attention was focused on the use of pathobiology as a tool for assessing environmental condition. By integrating the biotic component with water quality, sediment indices, and land- use information, this holistic evaluation of ecosystem health will provide management entities with information needed to inform local decision-making processes and establish benchmarks for future restoration efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted along the continental shelf of the northeastern Gulf of Mexico (GOM), encompassing 70,062 square kilometers of productive marine habitats located between the Mississippi Delta and Tampa Bay, August 13–21, 2010 on NOAA Ship Nancy Foster Cruise NF-10-09-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 50 stations throughout these waters using a random probabilistic sampling design. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, TPHs, PAHs, PCBs, PBDEs) in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, CDOM fluorescence, sediment grain size, and organic carbon content. Discrete water samples were collected just below the sea surface, in addition to any deeper subsurface depths where there was an occurrence of suspicious CDOM fluorescence signals, and analyzed for total BTEX/TPH and carcinogenic PAHs using immunoassay test kits. Other indicators of potential value from a human-dimension perspective were also recorded, including presence of any vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. In addition to the original project goals, both the scientific scope and general location of this project are relevant to addressing potential ecological impacts of the Deepwater Horizon oil spill. While sample analysis is still ongoing, a few preliminary results and observations are reported here. A final report will be completed once all data have been processed.