6 resultados para dimerization

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.

The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.

A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.

Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and direct observation of 1,1-di-tert-butyldiazene (16) at -127°C is described. The absorption spectrum of a red solution of 1,1-diazene 16 reveals a structured absorption band with λ max at 506 run (Me_2O, -125°C). The vibrational spacing in S_1 is about 1200 cm^(-1). The excited state of 16 emits weakly with a single maximum at 715 run observed in the fluorescence spectrum (Me_2O:CD_2Cl_2, -196°C). The proton NMR spectrum of 16 occurs as a singlet at 1.41 ppm. Monitoring this NMR absorption at -94^0 ± 2°C shows that 1,1-diazene 16 decomposes with a first-order rate of 1.8 x 10^(-3) sec(-1) to form isobutane, isobutylene and hexarnethylethane. This rate is 10^8 and 10^(34) times faster than the thermal decomposition of the corresponding cis and trans 1,2-di-tert-butyldiazene isomers. The free energy of activation for decomposition of 1,1-diazene 16 is found to be 12.5 ± 0.2 kcal/mol at -94°C which is much lower than the values of 19.1 and 19.4 kcal/lmole calculated at -94°C for N-(2,2,6,6- tetramethylpiperidyl)nitrene (3) and N-(2,2,5,5- tetrarnethylpyrrolidyl)nitrene (4), respectively. This difference between 16 and the cyclic-1,1-diazenes 3 and 4 can be attributed to a large steric interaction between the tert-butyl groups in 1,1-diazene 16.

In order to investigate the nature of the singlet-triplet gap in 1,1-diazenes, 2,5-di-tert-butyl-N-pyrrolynitrene (22) was generated but was found to be too reactive towards dimerization to be persistent. In the presence of dimethylsulfoxide, however, N-pyrrolynitrene (22) can be trapped as N-(2,5-di-tert-butyl- N'-pyrrolyl)dimethylsulfoxirnine (38). N-(2,5-di-tert-butyl-N'-pyrrolyl)dimethylsulfoximine (38-d^6) exchanges with free dimethylsulfoxide at 50°C in solution, presumably by generation and retrapping of pyrrolynitrene 22.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. Since their discovery full-length, RAG1 and RAG2 have been difficult to purify, and core derivatives are shown to be most active when purified from adherent 293-T cells. However, the protein yield from adherent 293-T cells is limited. Here we develop a human suspension cell purification and change the expression vector to boost RAG production 6-fold. We use these purified RAG proteins to investigate V(D)J recombination on a mechanistic single molecule level. As a result, we are able to measure the binding statistics (dwell times and binding energies) of the initial RAG binding events with or without its co-factor high mobility group box protein 1 (HMGB1), and to characterize synapse formation at the single-molecule level yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage upon forming the synapse. We then go on to investigate HMGB1 further by measuring it compact single DNA molecules. We observed concentration dependent DNA compaction, differential DNA compaction depending on the divalent cation type, and found that at a particular HMGB1 concentration the percentage of DNA compacted is conserved across DNA lengths. Lastly, we investigate another HMGB protein called TFAM, which is essential for packaging the mitochondrial genome. We present crystal structures of TFAM bound to the heavy strand promoter 1 (HSP1) and to nonspecific DNA. We show TFAM dimerization is dispensable for DNA bending and transcriptional activation, but is required for mtDNA compaction. We propose that TFAM dimerization enhances mtDNA compaction by promoting looping of mtDNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.

In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.

An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diketopiperazine (DKP) motif is found in a wide range of biologically active natural products. This work details our efforts toward two classes of DKP-containing natural products.

Class one features the pyrroloindoline structure, derived from tryptophans. Our group developed a highly enantioselective (3 + 2) formal cycloaddition between indoles and acrylates to provide pyrroloindoline products possessing three stereocenters. Utilizing this methodology, we accomplished asymmetric total synthesis of three natural products: (–)-lansai B, (+)-nocardioazines A and B. Total synthesis of (–)-lansai B was realized in six steps, and featured an amino acid dimerization strategy. The total synthesis of (+)-nocardioazine B was also successfully completed in ten steps. Challenges were met in approaching (+)-nocardioazine A, where a seemingly easy last-step epoxidization did not prove successful. After re-examining our synthetic strategy, an early-stage epoxidation strategy was pursued, which eventually yielded a nine-step total synthesis of (+)-nocardioazine A.

Class two is the epidithiodiketopiperazine (ETP) natural products, which possesses an additional episulfide bridge in the DKP core. With the goal of accessing ETPs with different peripheral structures for structure-activity relationship studies, a highly divergent route was successfully developed, which was showcased in the formal synthesis of (–)-emethallicin E and (–)-haematocin, and the first asymmetric synthesis of (–)-acetylapoaranotin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of the intra- and intermolecular base-stacking interactions involving several dinucleoside monophosphates in aqueous solution have been investigated by proton magnetic resonance spectrosocopy, and this method has been applied to a study of the interaction of polyuridylic acid with purine and adenosine monomers.

The pmr spectra of adenylyl (3' → 5') cytidine (ApC) and cytidylyl (3' → 5') adenosine (CpA) have been studied as a function of concentration and temperature. The results of these studies indicate that the intramolecular base-stacking interactions between the adenine and cytosine bases of these dinucleoside monophosphates are rather strong, and that the stacking tendencies are comparable for the two sequence isomers. The chemical shifts of the cytosine H5 and adenine H2 protons, and their variations with temperature, were shown to be consistent with stacked conformations in which both bases of the dinucleoside monophosphates are preferentially oriented in the anti conformation as in similar dApdC, and dCpdA (dA = deoxyadenosine; dC = deoxycytidine) segments in double helical DNA. The intramolecular stacking interaction was found to have a pronounced effect on the conformations of the ribose moieties, and these conformational changes are discussed. The concentration studies indicate extensive self-association of these dinucleoside monophosphates, and analysis of the concentration data facilitated determination of the dimerization constant for the association process as well as the nature of the intermolecular complexes.

The dependence of the ribose conformation upon the extent of intramolecular base-stacking was used to demonstrate that the base-base interaction in cytidylyl (3' → 5') cytidine (CpC) is rather strong, while there appears to be little interaction between the two uracil bases of uridylyl (3' → 5') uridine (UpU).

Studies of the binding of purine to several ribose and deoxyribose dinucleoside monophosphates show that the mode of interaction is base-stacking, and evidence for the formation of a purine-dinucleoside monophosphate intercalated complex is presented. The purine proton resonances are markedly broadened in this complex, and estimates of the purine linewidths in the complex and the equilibrium constant for purine intercalation are obtained.

A study of the interaction of unsubstitued purine with polyuridylic acid at 29°C by pmr indicated that purine binds to the uracil bases of the polymer by base-stacking. The severe broadening of the purine proton resonances observed provides strong evidence for the intercalation of purine between adjacent uracil bases of poly U. This interaction does not result in a more rigid or ordered structure for the polymer.

Investigation of the interaction between adenosine and polyuridylic acid revealed two modes of interaction between the monomer and the polymer, depending on the temperature. At temperatures above 26°C or so, monomeric adenosine binds to poly U by noncooperative A-U base stacking. Below this temperature, a rigid triple-stranded 1A:2U complex is formed, presumably via cooperative hydrogen-bonding as has previously been reported.

These results clearly illustrate the importance of base-stacking in non-specific interactions between bases, nucleosides and nucleotides, and also reveal the important role of the base-stacking interactions in cooperatively for med structures involving specific base-pairing where both types of interaction are possible.