18 resultados para abnormal laboratory result

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary organic aerosol (SOA) is produced in the atmosphere by oxidation of volatile organic compounds. Laboratory chambers are used understand the formation mechanisms and evolution of SOA formed under controlled conditions. This thesis presents studies of SOA formed from anthropogenic and biogenic precursors and discusses the effects of chamber walls on suspended vapors and particles.

During a chamber experiment, suspended vapors and particles can interact with the chamber walls. Particle wall loss is relatively well-understood, but vapor wall losses have received little study. Vapor wall loss of 2,3-epoxy-1,4-butanediol (BEPOX) and glyoxal was identified, quantified, and found to depend on chamber age and relative humidity.

Particles reside in the atmosphere for a week or more and can evolve chemically during that time period, a process termed aging. Simulating aging in laboratory chambers has proven to be challenging. A protocol was developed to extend the duration of a chamber experiment to 36 h of oxidation and was used to evaluate aging of SOA produced from m-xylene. Total SOA mass concentration increased and then decreased with increasing photooxidation suggesting a transition from functionalization to fragmentation chemistry driven by photochemical processes. SOA oxidation, measured as the bulk particle elemental oxygen-to-carbon ratio and fraction of organic mass at m/z 44, increased continuously starting after 5 h of photooxidation.

The physical state and chemical composition of an organic aerosol affect the mixing of aerosol components and its interactions with condensing species. A laboratory chamber protocol was developed to evaluate the mixing of SOA produced sequentially from two different sources by heating the chamber to induce particle evaporation. Using this protocol, SOA produced from toluene was found to be less volatile than that produced from a-pinene. When the two types of SOA were formed sequentially, the evaporation behavior most closely represented that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA particles resembles a core of SOA from the first precursor coated by a layer of SOA from the second precursor, indicative of limiting mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the hanging wall. Fault opening rates indicate that the hanging and foot walls detach near the earth surface, a phenomenon promoted by a decrease in magnitude of far-field tectonic loads. Subsequent shutting of the fault sends an opening pulse back down-dip. In case of a sub-Rayleigh earthquake, feedback from the reflected S wave re-ruptures the locked fault at super-shear speeds, providing another mechanism of super-shear transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by needs in molecular diagnostics and advances in microfabrication, researchers started to seek help from microfluidic technology, as it provides approaches to achieve high throughput, high sensitivity, and high resolution. One strategy applied in microfluidics to fulfill such requirements is to convert continuous analog signal into digitalized signal. One most commonly used example for this conversion is digital PCR, where by counting the number of reacted compartments (triggered by the presence of the target entity) out of the total number of compartments, one could use Poisson statistics to calculate the amount of input target.

However, there are still problems to be solved and assumptions to be validated before the technology is widely employed. In this dissertation, the digital quantification strategy has been examined from two angles: efficiency and robustness. The former is a critical factor for ensuring the accuracy of absolute quantification methods, and the latter is the premise for such technology to be practically implemented in diagnosis beyond the laboratory. The two angles are further framed into a “fate” and “rate” determination scheme, where the influence of different parameters is attributed to fate determination step or rate determination step. In this discussion, microfluidic platforms have been used to understand reaction mechanism at single molecule level. Although the discussion raises more challenges for digital assay development, it brings the problem to the attention of the scientific community for the first time.

This dissertation also contributes towards developing POC test in limited resource settings. On one hand, it adds ease of access to the tests by incorporating massively producible, low cost plastic material and by integrating new features that allow instant result acquisition and result feedback. On the other hand, it explores new isothermal chemistry and new strategies to address important global health concerns such as cyctatin C quantification, HIV/HCV detection and treatment monitoring as well as HCV genotyping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the quest for a descriptive theory of decision-making, the rational actor model in economics imposes rather unrealistic expectations and abilities on human decision makers. The further we move from idealized scenarios, such as perfectly competitive markets, and ambitiously extend the reach of the theory to describe everyday decision making situations, the less sense these assumptions make. Behavioural economics has instead proposed models based on assumptions that are more psychologically realistic, with the aim of gaining more precision and descriptive power. Increased psychological realism, however, comes at the cost of a greater number of parameters and model complexity. Now there are a plethora of models, based on different assumptions, applicable in differing contextual settings, and selecting the right model to use tends to be an ad-hoc process. In this thesis, we develop optimal experimental design methods and evaluate different behavioral theories against evidence from lab and field experiments.

We look at evidence from controlled laboratory experiments. Subjects are presented with choices between monetary gambles or lotteries. Different decision-making theories evaluate the choices differently and would make distinct predictions about the subjects' choices. Theories whose predictions are inconsistent with the actual choices can be systematically eliminated. Behavioural theories can have multiple parameters requiring complex experimental designs with a very large number of possible choice tests. This imposes computational and economic constraints on using classical experimental design methods. We develop a methodology of adaptive tests: Bayesian Rapid Optimal Adaptive Designs (BROAD) that sequentially chooses the "most informative" test at each stage, and based on the response updates its posterior beliefs over the theories, which informs the next most informative test to run. BROAD utilizes the Equivalent Class Edge Cutting (EC2) criteria to select tests. We prove that the EC2 criteria is adaptively submodular, which allows us to prove theoretical guarantees against the Bayes-optimal testing sequence even in the presence of noisy responses. In simulated ground-truth experiments, we find that the EC2 criteria recovers the true hypotheses with significantly fewer tests than more widely used criteria such as Information Gain and Generalized Binary Search. We show, theoretically as well as experimentally, that surprisingly these popular criteria can perform poorly in the presence of noise, or subject errors. Furthermore, we use the adaptive submodular property of EC2 to implement an accelerated greedy version of BROAD which leads to orders of magnitude speedup over other methods.

We use BROAD to perform two experiments. First, we compare the main classes of theories for decision-making under risk, namely: expected value, prospect theory, constant relative risk aversion (CRRA) and moments models. Subjects are given an initial endowment, and sequentially presented choices between two lotteries, with the possibility of losses. The lotteries are selected using BROAD, and 57 subjects from Caltech and UCLA are incentivized by randomly realizing one of the lotteries chosen. Aggregate posterior probabilities over the theories show limited evidence in favour of CRRA and moments' models. Classifying the subjects into types showed that most subjects are described by prospect theory, followed by expected value. Adaptive experimental design raises the possibility that subjects could engage in strategic manipulation, i.e. subjects could mask their true preferences and choose differently in order to obtain more favourable tests in later rounds thereby increasing their payoffs. We pay close attention to this problem; strategic manipulation is ruled out since it is infeasible in practice, and also since we do not find any signatures of it in our data.

In the second experiment, we compare the main theories of time preference: exponential discounting, hyperbolic discounting, "present bias" models: quasi-hyperbolic (α, β) discounting and fixed cost discounting, and generalized-hyperbolic discounting. 40 subjects from UCLA were given choices between 2 options: a smaller but more immediate payoff versus a larger but later payoff. We found very limited evidence for present bias models and hyperbolic discounting, and most subjects were classified as generalized hyperbolic discounting types, followed by exponential discounting.

In these models the passage of time is linear. We instead consider a psychological model where the perception of time is subjective. We prove that when the biological (subjective) time is positively dependent, it gives rise to hyperbolic discounting and temporal choice inconsistency.

We also test the predictions of behavioral theories in the "wild". We pay attention to prospect theory, which emerged as the dominant theory in our lab experiments of risky choice. Loss aversion and reference dependence predicts that consumers will behave in a uniquely distinct way than the standard rational model predicts. Specifically, loss aversion predicts that when an item is being offered at a discount, the demand for it will be greater than that explained by its price elasticity. Even more importantly, when the item is no longer discounted, demand for its close substitute would increase excessively. We tested this prediction using a discrete choice model with loss-averse utility function on data from a large eCommerce retailer. Not only did we identify loss aversion, but we also found that the effect decreased with consumers' experience. We outline the policy implications that consumer loss aversion entails, and strategies for competitive pricing.

In future work, BROAD can be widely applicable for testing different behavioural models, e.g. in social preference and game theory, and in different contextual settings. Additional measurements beyond choice data, including biological measurements such as skin conductance, can be used to more rapidly eliminate hypothesis and speed up model comparison. Discrete choice models also provide a framework for testing behavioural models with field data, and encourage combined lab-field experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.

A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.

A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.

Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.

The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotope geochemistry is a valuable toolkit for addressing a broad range of problems in the geosciences. Recent technical advances provide information that was previously unattainable or provide unprecedented precision and accuracy. Two such techniques are site-specific stable isotope mass spectrometry and clumped isotope thermometry. In this thesis, I use site-specific isotope and clumped isotope data to explore natural gas development and carbonate reaction kinetics. In the first chapter, I develop an equilibrium thermodynamics model to calculate equilibrium constants for isotope exchange reactions in small organic molecules. This equilibrium data provides a framework for interpreting the more complex data in the later chapters. In the second chapter, I demonstrate a method for measuring site-specific carbon isotopes in propane using high-resolution gas source mass spectrometry. This method relies on the characteristic fragments created during electron ionization, in which I measure the relative isotopic enrichment of separate parts of the molecule. My technique will be applied to a range of organic compounds in the future. For the third chapter, I use this technique to explore diffusion, mixing, and other natural processes in natural gas basins. As time progresses and the mixture matures, different components like kerogen and oil contribute to the propane in a natural gas sample. Each component imparts a distinct fingerprint on the site-specific isotope distribution within propane that I can observe to understand the source composition and maturation of the basin. Finally, in Chapter Four, I study the reaction kinetics of clumped isotopes in aragonite. Despite its frequent use as a clumped isotope thermometer, the aragonite blocking temperature is not known. Using laboratory heating experiments, I determine that the aragonite clumped isotope thermometer has a blocking temperature of 50-100°C. I compare this result to natural samples from the San Juan Islands that exhibit a maximum clumped isotope temperature that matches this blocking temperature. This thesis presents a framework for measuring site-specific carbon isotopes in organic molecules and new constraints on aragonite reaction kinetics. This study represents the foundation of a future generation of geochemical tools for the study of complex geologic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.

Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.

To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.

To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The material included within this report is the result of a series of tests of concrete specimens taken during the construction of various buildings in the cities of Pasadena and Los Angeles over a period of eight months.

The object of the problem is to determine the effect of the water ratio on the ultimate strength of the concrete as obtained from data observed and recorded from specimens taken from actual building practice rather than that from laboratory specimens made under ideal, or at least more nearly standard conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronal mass ejections (CMEs) are dramatic eruptions of large, plasma structures from the Sun. These eruptions are important because they can harm astronauts, damage electrical infrastructure, and cause auroras. A mysterious feature of these eruptions is that plasma-filled solar flux tubes first evolve slowly, but then suddenly erupt. One model, torus instability, predicts an explosive-like transition from slow expansion to fast acceleration, if the spatial decay of the ambient magnetic field exceeds a threshold.

We create arched, plasma filled, magnetic flux ropes similar to CMEs. Small, independently-powered auxiliary coils placed inside the vacuum chamber produce magnetic fields above the decay threshold that are strong enough to act on the plasma. When the strapping field is not too strong and not too weak, expansion force build up while the flux rope is in the strapping field region. When the flux rope moves to a critical height, the plasma accelerates quickly, corresponding to the observed slow-rise to fast-acceleration of most solar eruptions. This behavior is in agreement with the predictions of torus instability.

Historically, eruptions have been separated into gradual CMEs and impulsive CMEs, depending on the acceleration profile. Recent numerical studies question this separation. One study varies the strapping field profile to produce gradual eruptions and impulsive eruptions, while another study varies the temporal profile of the voltage applied to the flux tube footpoints to produce the two eruption types. Our experiment reproduced these different eruptions by changing the strapping field magnitude, and the temporal profile of the current trace. This suggests that the same physics underlies both types of CME and that the separation between impulsive and gradual classes of eruption is artificial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. It was not possible to produce anti-tetracycline antibody in laboratory animals by any of the methods tried. Tetracycline protein conjugates were prepared and characterized. It was shown that previous reports of the detection of anti-tetracycline antibody by in vitro-methods were in error. Tetracycline precipitates non-specifically with serum proteins. The anaphylactic reaction reported was the result of misinterpretation, since the observations were inconsistent with the known mechanism of anaphylaxis and the supposed antibody would not sensitize guinea pig skin. The hemagglutination reaction was not reproducible and was extremely sensitive to minute amounts of microbial contamination. Both free tetracyclines and the conjugates were found to be poor antigens.

II. Anti-aspiryl antibodies were produced in rabbits using 3 protein carriers. The method of inhibition of precipitation was used to determine the specificity of the antibody produced. ε-Aminocaproate was found to be the most effective inhibitor of the haptens tested, indicating that the combining hapten of the protein is ε-aspiryl-lysyl. Free aspirin and salicylates were poor inhibitors and did not combine with the antibody to a significant extent. The ortho group was found to participate in the binding to antibody. The average binding constants were measured.

Normal rabbit serum was acetylated by aspirin under in vitro conditions, which are similar to physiological conditions. The extent of acetylation was determined by immunochemical tests. The acetylated serum proteins were shown to be potent antigens in rabbits. It was also shown that aspiryl proteins were partially acetylated. The relation of these results to human aspirin intolerance is discussed.

III. Aspirin did not induce contact sensitivity in guinea pigs when they were immunized by techniques that induce sensitivity with other reactive compounds. The acetylation mechanism is not relevant to this type of hypersensitivity, since sensitivity is not produced by potent acetylating agents like acetyl chloride and acetic anhydride. Aspiryl chloride, a totally artificial system, is a good sensitizer. Its specificity was examined.

IV. Protein conjugates were prepared with p-aminosalicylic acid and various carriers using azo, carbodiimide and mixed anhydride coupling. These antigens were injected into rabbits and guinea pigs and no anti-hapten IgG or IgM response was obtained. Delayed hypersensitivity was produced in guinea pigs by immunization with the conjugates, and its specificity was determined. Guinea pigs were not sensitized by either injections or topical application of p-amino-salicylic acid or p-aminosalicylate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation.

The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate.

Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f99) was found to coincide with periods of heavy (f42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of these conditions to all measurements conducted during E-PEACE demonstrated that a large fraction of cloud droplet (72%) and dry aerosol mass (12%) sampled in the California coastal study region was heavily or moderately influenced by ship emissions. Another study investigated the chemical and physical evolution of a controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( < 1 hr) compared to the time needed for particles to become hygroscopic at sub-saturated humidity ( > 4 hr).

Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate.

Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fenton and photo-Fenton reactions which enhance particle-phase OH radical concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study concerns the longitudinal dispersion of fluid particles which are initially distributed uninformly over one cross section of a uniform, steady, turbulent open channel flow. The primary focus is on developing a method to predict the rate of dispersion in a natural stream.

Taylor's method of determining a dispersion coefficient, previously applied to flow in pipes and two-dimensional open channels, is extended to a class of three-dimensional flows which have large width-to-depth ratios, and in which the velocity varies continuously with lateral cross-sectional position. Most natural streams are included. The dispersion coefficient for a natural stream may be predicted from measurements of the channel cross-sectional geometry, the cross-sectional distribution of velocity, and the overall channel shear velocity. Tracer experiments are not required.

Large values of the dimensionless dispersion coefficient D/rU* are explained by lateral variations in downstream velocity. In effect, the characteristic length of the cross section is shown to be proportional to the width, rather than the hydraulic radius. The dimensionless dispersion coefficient depends approximately on the square of the width to depth ratio.

A numerical program is given which is capable of generating the entire dispersion pattern downstream from an instantaneous point or plane source of pollutant. The program is verified by the theory for two-dimensional flow, and gives results in good agreement with laboratory and field experiments.

Both laboratory and field experiments are described. Twenty-one laboratory experiments were conducted: thirteen in two-dimensional flows, over both smooth and roughened bottoms; and eight in three-dimensional flows, formed by adding extreme side roughness to produce lateral velocity variations. Four field experiments were conducted in the Green-Duwamish River, Washington.

Both laboratory and flume experiments prove that in three-dimensional flow the dominant mechanism for dispersion is lateral velocity variation. For instance, in one laboratory experiment the dimensionless dispersion coefficient D/rU* (where r is the hydraulic radius and U* the shear velocity) was increased by a factory of ten by roughening the channel banks. In three-dimensional laboratory flow, D/rU* varied from 190 to 640, a typical range for natural streams. For each experiment, the measured dispersion coefficient agreed with that predicted by the extension of Taylor's analysis within a maximum error of 15%. For the Green-Duwamish River, the average experimentally measured dispersion coefficient was within 5% of the prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is concerned with some of the properties of roll waves that develop naturally from a turbulent uniform flow in a wide rectangular channel on a constant steep slope . The wave properties considered were depth at the wave crest, depth at the wave trough, wave period, and wave velocity . The primary focus was on the mean values and standard deviations of the crest depths and wave periods at a given station and how these quantities varied with distance along the channel.

The wave properties were measured in a laboratory channel in which roll waves developed naturally from a uniform flow . The Froude number F (F = un/√ghn, un = normal velocity , hn = normal depth, g =acceleration of gravity) ranged from 3. 4 to 6. 0 for channel slopes So of . 05 and . 12 respectively . In the initial phase of their development the roll waves appeared as small amplitude waves with a continuous water surface profile . These small amplitude waves subsequently developed into large amplitude shock waves. Shock waves were found to overtake and combine with other shock waves with the result that the crest depth of the combined wave was larger than the crest depths before the overtake. Once roll waves began to develop, the mean value of the crest depths hnmax increased with distance . Once the shock waves began to overtake, the mean wave period Tav increased approximately linearly with distance.

For a given Froude number and channel slope the observed quantities h-max/hn , T' (T' = So Tav √g/hn), and the standard deviations of h-max/hn and T', could be expressed as unique functions of l/hn (l = distance from beginning of channel) for the two-fold change in hn occurring in the observed flows . A given value of h-max/hn occurred at smaller values of l/hn as the Froude number was increased. For a given value of h /hh-max/hn the growth rate of δh-max/h-maxδl of the shock waves increased as the Froude number was increased.

A laboratory channel was also used to measure the wave properties of periodic permanent roll waves. For a given Froude number and channel slope the h-max/hn vs. T' relation did not agree with a theory in which the weight of the shock front was neglected. After the theory was modified to include this weight, the observed values of h-max/hn were within an average of 6.5 percent of the predicted values, and the maximum discrepancy was 13.5 percent.

For h-max/hn sufficiently large (h-max/hn > approximately 1.5) it was found that the h-max/hn vs. T' relation for natural roll waves was practically identical to the h-max/hn vs. T' relation for periodic permanent roll waves at the same Froude number and slope. As a result of this correspondence between periodic and natural roll waves, the growth rate δh-max/h-maxδl of shock waves was predicted to depend on the channel slope, and this slope dependence was observed in the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within a wind farm, multiple turbine wakes can interact and have a substantial effect on the overall power production. This makes an understanding of the wake recovery process critically important to optimizing wind farm efficiency. Vertical-axis wind turbines (VAWTs) exhibit features that are amenable to dramatically improving this efficiency. However, the physics of the flow around VAWTs is not well understood, especially as it pertains to wake interactions, and it is the goal of this thesis to partially fill this void. This objective is approached from two broadly different perspectives: a low-order view of wind farm aerodynamics, and a detailed experimental analysis of the VAWT wake.

One of the contributions of this thesis is the development of a semi-empirical model of wind farm aerodynamics, known as the LRB model, that is able to predict turbine array configurations to leading order accuracy. Another contribution is the characterization of the VAWT wake as a function of turbine solidity. It was found that three distinct regions of flow exist in the VAWT wake: (1) the near wake, where periodic blade shedding of vorticity dominates; (2) a transition region, where growth of a shear-layer instability occurs; (3) the far wake, where bluff-body oscillations dominate. The wake transition can be predicted using a new parameter, the dynamic solidity, which establishes a quantitative connection between the wake of a VAWT and that of a circular cylinder. The results provide insight into the mechanism of the VAWT wake recovery and the potential means to control it.