9 resultados para Trans-epidermal Delivery

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.

Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.

Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.

In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.

Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the vulva of the nematode Caenorhabditis elegans is induced by a signal from the anchor cell of the somatic gonad. Activity of the gene lin-3 is required for the Vulval Precursor Cells (VPCs) to assume vulval fates. It is shown here that lin-3 encodes the vulval-inducing signal.

lin-3 was molecularly cloned by transposon-tagging and shown to encode a nematode member ofthe Epidermal Growth Factor (EGF) family. Genetic epistasis experiments indicate that lin-3 acts upstream of let-23, which encodes a homologue of the EGF-Receptor.

lin-3 transgenes that contain multiple copies of wild-type lin-3 genomic DNA clones confer a dominant multivulva phenotype in which up to all six of the VPCs assume vulval fates. The properties of these trans genes suggest that lin-3 can act in the anchor cell to induce vulval fates. Ablation of the gonadal precursors, which prevents the development of the AC, strongly reduces the ability of lin-3 transgenes to stimulate vulval development. A lin-3 recorder transgene that retains the ability to stimulate vulval development is expressed specifically in the anchor cell at the time of vulval induction.

Expression of an obligate secreted form of the EGF domain of Lin-S from a heterologous promoter is sufficient to induce vulval fates in the absence of the normal source of the inductive signal. This result suggests that Lin-S may act as a secreted factor, and that Lin-S may be the sole vulval-inducing signal made by the anchor cell.

lin-3 transgenes can cause adjacent VPCs to assume the 1° vulval fate and thus can override the action of the lateral signal mediated by lin-12 that normally prevents adjacent 1° fates. This indicates that the production of Lin-3 by the anchor cell must be limited to allow the VPCs to assume the proper pattern of fates of so 3° 3° 2° 1° 2° 3°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vulval differentiation in C. elegans is mediated by an Epidermal growth factor (EGF)- EGF receptor (EGFR) signaling pathway. I have cloned unc-101, a negative regulator of vulval differentiation of the nematode C. elegans. unc-101 encodes a homolog of AP47, the medium chain of the trans-Golgi clathrin-associated protein complex. This identity was confirmed by cloning and comparing sequence of a C. elegans homolog of AP50, the medium chain of the plasma membrane clathrin-associated protein complex. I provided the first genetic evidence that the trans-Golgi clathrin-coated vesicles are involved in regulation of an EGF signaling pathway. Most of the unc-101 alleles are deletions or nonsense mutations, suggesting that these alleles severely reduce the unc-101 activity. A hybrid gene that contains parts of unc-101 and mouse AP4 7 rescued at least two phenotypes of unc-101 mutations, the Unc and the suppression of vulvaless phenotype of let-23(sy1) mutation. Therefore, the functions of AP47 are conserved between nematodes and mammals.

unc-101 mutations can cause a greater than wild-type vulval differentiation in combination with certain mutations in sli-1, another negative regulator of the vulval induction pathway. A mutation in a new gene, rok-1, causes no defect by itself, but causes a greater than wild-type vulval differentiation in the presence of a sli-1 mutation. The unc-101; rok-1; sli-1 triple mutants display a greater extent of vulval differentiation than any double mutant combinations of unc-101, rok-1 and sli-1. Therefore, rok-1 locus defines another negative regulator of the vulval induction pathway.

I analyzed a second gene encoding an AP47 homolog in C. elegans. This gene, CEAP47, encodes a protein 72% identical to both unc-101 and mammalian AP47. A hybrid gene containing parts of unc-101 and CEAP47 sequences can rescue phenotypes of unc-101 mutants, indicating that UNC- 101 and CEAP47 proteins can be redundant if expressed in the same set of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.

Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is an important mediator in the vertebrate immune system. IL-2 is a potent growth factor that mature T lymphocytes use as a proliferation signal and the production of IL-2 is crucial for the clonal expansion of antigen-specific T cells in the primary immune response. IL-2 driven proliferation is dependent on the interaction of the lymphokine with its cognate multichain receptor. IL-2 expression is induced only upon stimulation and transcriptional activation of the IL-2 gene relies extensively on the coordinate interaction of numerous inducible and constitutive trans-acting factors. Over the past several years, thousands of papers have been published regarding molecular and cellular aspects of IL-2 gene expression and IL-2 function. The vast majority of these reports describe work that has been carried out in vitro. However, considerably less is known about control of IL-2 gene expression and IL-2 function in vivo.

To gain new insight into the regulation of IL-2 gene expression in vivo, anatomical and developmental patterns of IL-2 gene expression in the mouse were established by employing in situ hybridization and immunohistochemical staining methodologies to tissue sections generated from normal mice and mutant animals in which T -cell development was perturbed. Results from these studies revealed several interesting aspects of IL-2 gene expression, such as (1) induction of IL-2 gene expression and protein synthesis in the thymus, the primary site of T-cell development in the body, (2) cell-type specificity of IL-2 gene expression in vivo, (3) participation of IL-2 in the extrathymic expansion of mature T cells in particular tissues, independent of an acute immune response to foreign antigen, (4) involvement of IL-2 in maintaining immunologic balance in the mucosal immune system, and (5) potential function of IL-2 in early events associated with hematopoiesis.

Extensive analysis of IL-2 mRNA accumulation and protein production in the murine thymus at various stages of development established the existence of two classes of intrathymic IL-2 producing cells. One class of intrathymic IL-2 producers was found exclusively in the fetal thymus. Cells belonging to this subset were restricted to the outermost region of the thymus. IL-2 expression in the fetal thymus was highly transient; a dramatic peak ofiL-2 mRNA accumulation was identified at day 14.5 of gestation and maximal IL-2 protein production was observed 12 hours later, after which both IL-2 mRNA and protein levels rapidly decreased. Significantly, the presence of IL-2 expressing cells in the day 14-15 fetal thymus was not contingent on the generation of T-cell receptor (TcR) positive cells. The second class of IL-2 producing cells was also detectable in the fetal thymus (cells found in this class represented a minority subset of IL-2 producers in the fetal thymus) but persist in the thymus during later stages of development and after birth. Intrathymic IL-2 producers in postnatal animals were located in the subcapsular region and cortex, indicating that these cells reside in the same areas where immature T cells are consigned. The frequency of IL-2 expressing cells in the postnatal thymus was extremely low, indicating that induction of IL-2 expression and protein synthesis are indicative of a rare activation event. Unlike the fetal class of intrathymic IL-2 producers, the presence of IL-2 producing cells in the postnatal thymus was dependent on to the generation of TcR+ cells. Subsequent examination of intrathymic IL-2 production in mutant postnatal mice unable to produce either αβ or γδ T cells showed that postnatal IL-2 producers in the thymus belong to both αβ and γδ lineages. Additionally, further studies indicated that IL-2 synthesis by immature αβ -T cells depends on the expression of bonafide TcR αβ-heterodimers. Taken altogether, IL-2 production in the postnatal thymus relies on the generation of αβ or γδ-TcR^+ cells and induction of IL-2 protein synthesis can be linked to an activation event mediated via the TcR.

With regard to tissue specificity of IL-2 gene expression in vivo, analysis of whole body sections obtained from normal neonatal mouse pups by in situ hybridization demonstrated that IL-2 mRNA^+ cells were found in both lymphoid and nonlymphoid tissues with which T cells are associated, such as the thymus (as described above), dermis and gut. Tissues devoid of IL-2 mRNA^+ cells included brain, heart, lung, liver, stomach, spine, spinal cord, kidney, and bladder. Additional analysis of isolated tissues taken from older animals revealed that IL-2 expression was undetectable in bone marrow and in nonactivated spleen and lymph nodes. Thus, it appears that extrathymic IL-2 expressing cells in nonimmunologically challenged animals are relegated to particular epidermal and epithelial tissues in which characterized subsets of T cells reside and thatinduction of IL-2 gene expression associated with these tissues may be a result of T-cell activation therein.

Based on the neonatal in situ hybridization results, a detailed investigation into possible induction of IL-2 expression resulting in IL-2 protein synthesis in the skin and gut revealed that IL-2 expression is induced in the epidermis and intestine and IL-2 protein is available to drive cell proliferation of resident cells and/or participate in immune function in these tissues. Pertaining to IL-2 expression in the skin, maximal IL-2 mRNA accumulation and protein production were observed when resident Vγ_3^+ T-cell populations were expanding. At this age, both IL-2 mRNA^+ cells and IL-2 protein production were intimately associated with hair follicles. Likewise, at this age a significant number of CD3ε^+ cells were also found in association with follicles. The colocalization of IL-2 expression and CD3ε^+ cells suggests that IL-2 expression is induced when T cells are in contact with hair follicles. In contrast, neither IL-2 mRNA nor IL-2 protein were readily detected once T-cell density in the skin reached steady-state proportions. At this point, T cells were no longer found associated with hair follicles but were evenly distributed throughout the epidermis. In addition, IL-2 expression in the skin was contingent upon the presence of mature T cells therein and induction of IL-2 protein synthesis in the skin did not depend on the expression of a specific TcR on resident T cells. These newly disclosed properties of IL-2 expression in the skin indicate that IL-2 may play an additional role in controlling mature T-cell proliferation by participating in the extrathymic expansion of T cells, particularly those associated with the epidermis.

Finally, regarding IL-2 expression and protein synthesis in the gut, IL-2 producing cells were found associated with the lamina propria of neonatal animals and gut-associated IL-2 production persisted throughout life. In older animals, the frequency of IL-2 producing cells in the small intestine was not identical to that in the large intestine and this difference may reflect regional specialization of the mucosal immune system in response to enteric antigen. Similar to other instances of IL-2 gene expression in vivo, a failure to generate mature T cells also led to an abrogation of IL-2 protein production in the gut. The presence of IL-2 producing cells in the neonatal gut suggested that these cells may be generated during fetal development. Examination of the fetal gut to determine the distribution of IL-2 producing cells therein indicated that there was a tenfold increase in the number of gut-associated IL-2 producers at day 20 of gestation compared to that observed four days earlier and there was little difference between the frequency of IL-2 producing cells in prenatal versus neonatal gut. The origin of these fetally-derived IL-2 producing cells is unclear. Prior to the immigration of IL-2 inducible cells to the fetal gut and/or induction of IL-2 expression therein, IL-2 protein was observed in the fetal liver and fetal omentum, as well as the fetal thymus. Considering that induction of IL-2 protein synthesis may be an indication of future functional capability, detection of IL-2 producing cells in the fetal liver and fetal omentum raises the possibility that IL-2 producing cells in the fetal gut may be extrathymic in origin and IL-2 producing cells in these fetal tissues may not belong solely to the T lineage. Overall, these results provide increased understanding of the nature of IL-2 producing cells in the gut and how the absence of IL-2 production therein and in fetal hematopoietic tissues can result in the acute pathology observed in IL-2 deficient animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigations presented in this thesis use various in vivo techniques to understand how trans-acting factors control gene expression. The first part addresses the transcriptional regulation of muscle creatine kinase (MCK). MCK expression is activated during the course of development and is found only in differentiated muscle. Several in vivo footprints are observed at the enhancer of this gene, but all of these interactions are limited to cell types that express MCK. This is interesting because two of the footprints appear to represent muscle specific use of general transcription factors, while the other two correspond to sites that can bind the myogenic regulator, MyoD1, in vitro. MyoD1 and these general factors are present in myoblasts, but can bind to the enhancer only in myocytes. This suggests that either the factors themselves are post-translationally modified (phosphorylation or protein:protein interactions), or the accessibility of the enhancer to the factors is limited (changes in chromatin structure). The in vivo footprinting study of MCK was performed with a new ligation mediated, single-sided PCR (polymerase chain reaction) technique that I have developed.

The second half of the thesis concerns the regulation of mouse metallothionein (MT). Metallothioneins are a family of highly conserved housekeeping genes whose expression can be induced by heavy metals, steroids, and other stresses. By adapting a primer extension method of genomic sequencing to in vivo footprinting, I've observed both metal inducible and noninducible interactions at the promoter of MT-I. From these results I've been able to limit the possible mechanisms by which metal responsive trans-acting factors induce transcription. These interpretations correlate with a second line of experiments involving the stable titration of positive acting factors necessary for induction of MT. I've amplified the promoter of MT to 10^2-10^3 copies per cell by fusing the 5' and 3' ends of the MT gene to the coding region of DHFR and selecting cells for methotrexate resistance. In these cells, there is a metal-specific titration effect, and although it acts at the level of transcription, it appears to be independent of direct DNA binding factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of metal atoms on photochemical transformations has been investigated by studies of the cis-trans isomerization of β-styrylferrocene.

The photostationary state lies entirely on the side of the trans isomer in the cases of direct irradiation at 3130 Å or at 3660 Å. The quantum yield at 3130 Å is 0.00650 and does not vary with concentration. In the presence of benzophenon as sensitizer the quantum yield is 0.00540. On the other hand, the quantum yield for direct irradiation at 3660 Å decreases with increasing concentration of cis β- styrylferrocene varying from 0.00365 to 0.00198.

These results lead to the suggestion that the isomerization takes place from a triplet state of β-styrylferrocene which probably has higher energy than the lowest triplet; reaction from the third triplet seems most likely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of the photosensitized cis-trans isomerization of 2,3-diphenylbutene-2 was studied as a function of sensitizer energy by previously established methods. In addition, certain sensitizers for which parameters other than energy transfer are operative in inducting isomerizations, were studied in more detail. Sensitization of various stilbenes and substituted stilbenes by triphenylene is discussed in terms of excited state complex formation with stilbene. Sensitization by quinones, halogen-containing aromatics and 1,2-diketones is discussed in terms of attack by photolytically produced free radicals, either by addition to and elimination from the double bond, or in the cases of 1,2-diphenylpropene and 2,3-diphenylbutene-2, by hydrogen abstraction from one of the methyl groups and reversible abstraction by the allylic radical to produce cis-trans isomerized substrate and the structurally isomerized products, 2,3-diphenylpropene and 2,3-diphenylbutene-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic diseases of the central nervous system are poorly treated due to the inability of most therapeutics to cross the blood-brain barrier. The blood-brain barrier is an anatomical and physiological barrier that severely restricts solute influx, including most drugs, from the blood to the brain. One promising method to overcome this obstacle is to use endogenous solute influx systems at the blood-brain barrier to transport drugs. Therapeutics designed to enter the brain through transcytosis by binding the transferrin receptor, however, are restricted within endothelial cells. The focus of this work was to develop a method to increase uptake of transferrin-containing nanoparticles into the brain by overcoming these restrictive processes.

To accomplish this goal, nanoparticles were prepared with surface transferrin molecules bound through various liable chemical bonds. These nanoparticles were designed to shed the targeting molecule during transcytosis to allow increased accumulation of nanoparticles within the brain.

Transferrin was added to the surface of nanoparticles through either redox or pH sensitive chemistry. First, nanoparticles with transferrin bound through disulfide bonds were prepared. These nanoparticles showed decreased avidity for the transferrin receptor after exposure to reducing agents and increased ability to enter the brain in vivo compared to those lacking the disulfide link.

Next, transferrin was attached through a chemical bond that cleaves at mildly acidic pH. Nanoparticles containing a cleavable link between transferrin and gold nanoparticle cores were found to both cross an in vitro model of the blood-brain barrier and accumulate within the brain in significantly higher numbers than similar nanoparticles lacking the cleavable bond. Also, this increased accumulation was not seen when using this same strategy with an antibody to transferrin receptor, indicating that behavior of nanoparticles at the blood-brain barrier varies depending on what type of targeting ligand is used.

Finally, polymeric nanoparticles loaded with dopamine and utilizing a superior acid-cleavable targeting chemistry were investigated as a potential treatment for Parkinson’s disease. These nanoparticles were capable of increasing dopamine quantities in the brains of healthy mice, highlighting the therapeutic potential of this design. Overall, this work describes a novel method to increase targeted nanoparticle accumulation in the brain.