7 resultados para Restriction Fragment Length

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of cell-cell interactions in the nervous system are mediated by immunoglobulin gene superfamily members. For example, neuroglian, a homophilic neural cell adhesion molecule in Drosophila, has an extracellular portion comprising six C- 2 type immunoglobulin-like domains followed by five fibronectin type III (FnIII) repeats. Neuroglian shares this domain organization and significant sequence identity with Ll, a murine neural adhesion molecule that could be a functional homologue. Here I report the crystal structure of a proteolytic fragment containing the first two FnIII repeats of neuroglian (NgFn 1,2) at 2.0Å. The interpretation of photomicrographs of rotary shadowed Ng, the entire extracellular portion of neuroglian, and NgFnl-5, the five neuroglian Fn III domains, is also discussed.

The structure of NgFn 1,2 consists of two roughly cylindrical β-barrel structural motifs arranged in a head-to-tail fashion with the domains meeting at an angle of ~120, as defined by the cylinder axes. The folding topology of each domain is identical to that previously observed for single FnIII domains from tenascin and fibronectin. The domains of NgFn1,2 are related by an approximate two fold screw axis that is nearly parallel to the longest dimension of the fragment. Assuming this relative orientation is a general property of tandem FnIII repeats, the multiple tandem FnIII domains in neuroglian and other proteins are modeled as thin straight rods with two domain zig-zag repeats. When combined with the dimensions of pairs of tandem immunoglobulin-like domains from CD4 and CD2, this model suggests that neuroglian is a long narrow molecule (20 - 30 Å in diameter) that extends up to 370Å from the cell surface.

In photomicrographs, rotary shadowed Ng and NgFn1-5 appear to be highly flexible rod-like molecules. NgFn 1-5 is observed to bend in at least two positions and has a mean total length consistent with models generated from the NgFn1,2 structure. Ng molecules have up to four bends and a mean total length of 392 Å, consistent with a head-to-tail packing of neuroglian's C2-type domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast chromosomes contain sequences called ARSs which function as origins of replication in vitro and in vivo. We have carried out a systematic deletion analysis of ARS1, allowing us to define three functionally distinct domains, designated A, B, and C. Domain A is a sequence of 11 to 19bp, containing the core consensus element that is required for replication. The core consensus sequence, A/TTTTATPuTTTA/T, is conserved at all ARSs sequenced to date. A fragment containing only element A and 8 flanking nucleotides enables autonomous replication of centromeric plasmids. These plasmids replicate very inefficiently, suggesting that flanking sequences must be important for ARS function. Domain B also provides important sequences needed for efficient replication. Deletion of domain B drastically increases the doubling times of transformants and reduces plasmid stability. Domain B contains a potential consensus sequence conserved at some ARSs which overlaps a region of bent DNA. Mutational analysis suggests this bent DNA may be important for ARS function. Deletion of domain C has only a slight effect on replication of plasmids carrying those deletions.

We have identified a protein called ARS binding factor I (ABF-I) that binds to the HMR-E ARS and ARS1. We have purified this protein to homogeneity using conventional and oligonucleotide affinity chromatography. The protein has an apparent molecular weight of 135kDa and is present at about 700 molecules per diploid cell, based on the yield of purified protein and in situ antibody staining. DNaseI footprinting reveals that ABF-I binds sequence-specifically to an approximately 24bp sequence that overlaps element Bat ARSl. This same protein binds to and protects a similar size region at the HMR-E ARS.

We also find evidence for another ARS binding protein, ABF-III, based on DN asei footprint analysis and gel retardation assays. The protein protects approximately 22bp adjacent to the ABF-I site. There appears to be no interaction between ABF-I and ABF-III despite the proximity of their binding sites.

To address the function of ABF-I in DNA replication, we have cloned the ABF-I gene using rabbit polyclonal anti-sera and murine monoclonal antibodies against ABF-I to screen a λgt11 expression library. Four EcoRI restriction fragments were isolated which encoded proteins that were recognized by both polyclonal and monoclonal antibodies. A gene disruption can now be constructed to determine the in vivo function of ABF-I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sea urchin embryonic skeleton, or spicule, is deposited by mesenchymal progeny of four precursor cells, the micromeres, which are determined to the skeletogenic pathway by a process known as cytoplasmic localization. A gene encoding one of the major products of the skeletogenic mesenchyme, a prominent 50 kD protein of the spicule matrix, has been characterized in detail. cDNA clones were first isolated by antibody screening of a phage expression library, followed by isolation of homologous genomic clones. The gene, known as SM50, is single copy in the sea urchin genome, is divided into two exons of 213 and 1682 bp, and is expressed only in skeletogenic cells. Transcripts are first detectable at the 120 cell stage, shortly after the segregation of the skeletogenic precursors from the rest of the embryo. The SM50 open reading frame begins within the first exon, is 450 amino acids in length, and contains a loosely repeated 13 amino acid motif rich in acidic residues which accounts for 45% of the protein and which is possibly involved in interaction with the mineral phase of the spicule.

The important cis-acting regions of the SM50 gene necessary for proper regulation of expression were identified by gene transfer experiments. A 562 bp promoter fragment, containing 438 bp of 5' promoter sequence and 124 bp of the SM50 first exon (including the SM50 initiation codon), was both necessary and sufficient to direct high levels of expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene specifically in the skeletogenic cells. Removal of promoter sequences between positions -2200 and -438, and of transcribed regions downstream of +124 (including the SM50 intron), had no effect on the spatial or transcriptional activity of the transgenes.

Regulatory proteins that interact with the SM50 promoter were identified by the gel retardation assay, using bulk embryo mesenchyme blastula stage nuclear proteins. Five protein binding sites were identified and mapped to various degrees of resolution. Two sites are homologous, may be enhancer elements, and at least one is required for expression. Two additional sites are also present in the promoter of the aboral ectoderm specific cytoskeletal actin gene CyIIIa; one of these is a CCAA T element, the other a putative repressor element. The fifth site overlaps the binding site of the putative repressor and may function as a positive regulator by interfering with binding of the repressor. All of the proteins are detectable in nuclear extracts prepared from 64 cell stage embryos, a stage just before expression of SM50 is initiated, as well as from blastula and gastrula stage; the putative enhancer binding protein may be maternal as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ritterazine and cephalostatin natural products have biological activities and structures that are interesting to synthetic organic chemists. These products have been found to exhibit significant cytotoxicity against P388 murine leukemia cells, and therefore have the potential to be used as anticancer drugs. The ritterazines and cephalostatins are steroidal dimers joined by a central pyrazine ring. Given that the steroid halves are unsymmetrical and highly oxygenated, there are several challenges in synthesizing these compounds in an organic laboratory.

Ritterazine B is the most potent derivative in the ritterazine family. Its biological activity is comparable to drugs that are being used to treat cancer today. For this reason, and the fact that there are no reported syntheses of ritterazine B to date, our lab set out to synthesize this natural product.

Herein, efforts toward the synthesis of the western fragment of ritterazine B are described. Two different routes are explored to access a common intermediate. An alkyne conjugate addition reaction was initially investigated due to the success of this key reaction in the synthesis of the eastern fragment. However, it has been found that a propargylation reaction has greater reactivity and yields, and has the potential to reduce the step count of the synthesis of the western fragment of ritterazine B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the behavior of granular materials at three length scales. At the smallest length scale, the grain-scale, we study inter-particle forces and "force chains". Inter-particle forces are the natural building blocks of constitutive laws for granular materials. Force chains are a key signature of the heterogeneity of granular systems. Despite their fundamental importance for calibrating grain-scale numerical models and elucidating constitutive laws, inter-particle forces have not been fully quantified in natural granular materials. We present a numerical force inference technique for determining inter-particle forces from experimental data and apply the technique to two-dimensional and three-dimensional systems under quasi-static and dynamic load. These experiments validate the technique and provide insight into the quasi-static and dynamic behavior of granular materials.

At a larger length scale, the mesoscale, we study the emergent frictional behavior of a collection of grains. Properties of granular materials at this intermediate scale are crucial inputs for macro-scale continuum models. We derive friction laws for granular materials at the mesoscale by applying averaging techniques to grain-scale quantities. These laws portray the nature of steady-state frictional strength as a competition between steady-state dilation and grain-scale dissipation rates. The laws also directly link the rate of dilation to the non-steady-state frictional strength.

At the macro-scale, we investigate continuum modeling techniques capable of simulating the distinct solid-like, liquid-like, and gas-like behaviors exhibited by granular materials in a single computational domain. We propose a Smoothed Particle Hydrodynamics (SPH) approach for granular materials with a viscoplastic constitutive law. The constitutive law uses a rate-dependent and dilation-dependent friction law. We provide a theoretical basis for a dilation-dependent friction law using similar analysis to that performed at the mesoscale. We provide several qualitative and quantitative validations of the technique and discuss ongoing work aiming to couple the granular flow with gas and fluid flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.

We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.

We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.