2 resultados para Pig male reproduction

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with spatial filtering. What is its utility in tone reproduction? Does it exist in vision, and if so, what constraints does it impose on the nervous system?

Tone reproduction is just the art and science of taking a picture and then displaying it. The sensors available to capture an image have a greater dynamic range than the media that may be used to display it. Conventionally, spatial filtering is used to boost contrast; it ameliorates the loss of contrast that results when the sensor signal range is scaled down to fit the display range. In this thesis, a type of nonlinear spatial filtering is discussed that results in direct range reduction without range scaling. This filtering process is instantiated in a real-time image processor built using analog CMOS VLSI.

Spatial filtering must be applied with care in both artificial and natural vision systems. It is argued that the nervous system does not simply filter linearly across an image. Rather, the way that we see things implies that the nervous system filters nonlinearly. Further, many models for color vision include a high-pass filtering step in which the DC information is lost. A real-time study of filtering in color space leads to the conclusion that the nervous system is not that simple, and that it maintains DC information by referencing to white.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cells of the specialized mating structures of the nematode Caenorhabditis elegans adult male tail develop from sex-specific divisions of postembryonic blast cells. One male-specific blast cell, B, is the precursor to all the cells of the copulatory spicules. Both cell interactions and autonomous fate specification mechanisms are utilized in the B lineage to specify fate.

During development the anterior daughter of B, B.a, generates four distinct pairs of cells. Cell ablation experiments indicate that the cells of each pair respond to positional cues provided by other male-specific blast cells. F and U promote anterior fates, Y.p promotes some posterior fates, and the B.a progeny promote posterior fates. The cells within each pair may also interact.

The lin-3/let-23 signalling pathway, identified for its function in C. elegans hermaphrodite vulval induction, mediates the signal from F and U. Reduction-of-function mutations in lin-3 (EGF-like signal), let-23 (receptor), sem-5 (adaptor), let-60 (ras), or lin-45 (raf) disrupt the fates of the anterior cells, and mimic F and U ablation. In addition, ectopically expressed lin-3 disrupts the fates of the posterior cells, and can promote anterior fates even in the absence of F and U.

A genetic screen of over 9000 mutagenized gametes recovered 22 mutations in 20 loci that disrupt fate specification in male tail lineages. Seven of these mutations may represent new genes that play a role in male tail development.

The first division of the B cell is asymmetric. The gene vab-3 is required for specification of B.a fates, and it may represent a factor whose activity is localized to the B.a cell via the gene lin-17. lin-17 acts both at the first division of the B cell and at specific other cell divisions in the lineage.