9 resultados para NEGATIVE-IONS

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.

In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.

Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.

Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.

Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.

Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.

The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vulval differentiation in C. elegans is mediated by an Epidermal growth factor (EGF)- EGF receptor (EGFR) signaling pathway. I have cloned unc-101, a negative regulator of vulval differentiation of the nematode C. elegans. unc-101 encodes a homolog of AP47, the medium chain of the trans-Golgi clathrin-associated protein complex. This identity was confirmed by cloning and comparing sequence of a C. elegans homolog of AP50, the medium chain of the plasma membrane clathrin-associated protein complex. I provided the first genetic evidence that the trans-Golgi clathrin-coated vesicles are involved in regulation of an EGF signaling pathway. Most of the unc-101 alleles are deletions or nonsense mutations, suggesting that these alleles severely reduce the unc-101 activity. A hybrid gene that contains parts of unc-101 and mouse AP4 7 rescued at least two phenotypes of unc-101 mutations, the Unc and the suppression of vulvaless phenotype of let-23(sy1) mutation. Therefore, the functions of AP47 are conserved between nematodes and mammals.

unc-101 mutations can cause a greater than wild-type vulval differentiation in combination with certain mutations in sli-1, another negative regulator of the vulval induction pathway. A mutation in a new gene, rok-1, causes no defect by itself, but causes a greater than wild-type vulval differentiation in the presence of a sli-1 mutation. The unc-101; rok-1; sli-1 triple mutants display a greater extent of vulval differentiation than any double mutant combinations of unc-101, rok-1 and sli-1. Therefore, rok-1 locus defines another negative regulator of the vulval induction pathway.

I analyzed a second gene encoding an AP47 homolog in C. elegans. This gene, CEAP47, encodes a protein 72% identical to both unc-101 and mammalian AP47. A hybrid gene containing parts of unc-101 and CEAP47 sequences can rescue phenotypes of unc-101 mutants, indicating that UNC- 101 and CEAP47 proteins can be redundant if expressed in the same set of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collector-type experiments have been conducted to investigate two different aspects of sputtering induced by keV ions. The first study looked for possible ejection mechanisms related to the primary charge state of the projectile. Targets of CsI and LiNbO_3 were bombarded with 48 keV Ar^(q+), and a Au target was bombarded with 60 keV Ar^(q+), for q = 4, 8, and 11. The collectors were analyzed using heavy-ion Rutherford backscattering spectroscopy to determine the differential angular sputtering yields; these and the corresponding total yields were examined for variations as a function of projectile charge state. For the Au target, no significant changes were seen, but for the insulating targets slight (~10%) enhancements were observed in the total yields as the projectile charge state was increased from 4+ to 11+.

In the second investigation, artificial ^(92)Mo/^(100)Mo targets were bombarded with 5 and 10 keV beams of Ar^+ and Xe^+ to study the isotopic fractionation of sputtered neutrals as a function of emission angle and projectile fluence. Using secondary ion mass spectroscopy to measure the isotope ratio on the collectors, material ejected into normal directions at low bombarding fluences (~ 10^(15) ions cm^(-2)) was found to be enriched in the light isotope by as much as ~70‰ compared to steady state. Similar results were found for secondary Mo ions sputtered by 14.5 keV O^-. For low-fluence 5 keV Xe^+ bombardment, the light-isotope enrichment at oblique angles was ~20‰ less than the corresponding enrichment in the normal direction. No angular dependence could be resolved for 5 keV Ar^+ projectiles at the lowest fluence. The above fractionation decreased to steady-state values after bombarding fluences of a few times 10^(16) ions cm^(-2) , with the angular dependence becoming more pronounced. The fractionation and total sputtering yield were found to be strongly correlated, indicating that the above effects may have been related to the presence of a modified target surface layer. The observed effects are consistent with other secondary ion measurements and multiple-interaction computer simulations, and are considerably larger than predicted by existing analytic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitin-dependent proteolytic pathway plays an important role in a broad array of cellular processes, inducting cell cycle control and transcription. Biochemical analysis of the ubiquitination of Sic1, the B-type cyclin-dependent kinase (CDK) inhibitor in budding yeast helped to define a ubiquitin ligase complex named SCFcdc4 (for Skp1, Cdc53/cullin, F-box protein). We found that besides Sic1, the CDK inhibitor Far1 and the replication initiation protein Cdc6 are also substrates of SCFcdc4 in vitro. A common feature in the ubiquitination of the cell cycle SCFcdc4 substrates is that they must be phosphorylated by the major cell cycle CDK, Cdc28. Gcn4, a transcription activator involved in the general control of amino acid biosynthesis, is rapidly degraded in an SCFcdc4-dependent manner in vivo. We have focused on this substrate to investigate the generality of the SCFcdc4 pathway. Through biochemical fractionations, we found that the Srb10 CDK phosphorylates Gcn4 and thereby marks it for recognition by SCFcdc4 ubiquitin ligase. Srb10 is a physiological regulator of Gcn4 stability because both phosphorylation and turnover of Gcn4 are diminished in srb10 mutants. Furthermore, we found that at least two different CDKs, Pho85 and Srb10, conspire to promote the rapid degradation of Gcn4 in vivo. The multistress response transcriptional regulator Msn2 is also a substrate for Srb10 and is hyperphosphorylated in an Srb10-dependent manner upon heat stress-induced translocation into the nucleus. Whereas Msn2 is cytoplasmic in resting wild type cells, its nuclear exclusion is partially compromised in srb10 mutant cells. Srb10 has been shown to repress a subset of genes in vivo, and has been proposed to inhibit transcription via phosphorylation of the C-terminal domain of RNA polymerase II. Our results suggest a general theme that Srb10 represses the transcription of specific genes by directly antagonizing the transcriptional activators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse-height and time-of-flight methods have been used to measure the electronic stopping cross sections for projectiles of 12C, 16O, 19F, 23Na, 24Mg, and 27Al, slowing in helium, neon, argon, krypton, and xenon. The ion energies were in the range 185 keV ≤ E ≤ 2560 keV.

A semiempirical calculation of the electronic stopping cross section for projectiles with atomic numbers between 6 and 13 passing through the inert gases has been performed using a modification of the Firsov model. Using Hartree-Slater-Fock orbitals, and summing over the losses for the individual charge states of the projectiles, good agreement has been obtained with the experimental data. The main features of the stopping cross section seen in the data, such as the Z1 oscillation and the variation of the velocity dependence on Z1 and Z2, are present in the calculation. The inclusion of a modified form of the Bethe-Bloch formula as an additional term allows the increase of the velocity dependence for projectile velocities above vo to be reproduced in the calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental measurements of rate of energy loss were made for protons of energy .5 to 1.6 MeV channeling through 1 μm thick silicon targets along the <110>, <111>, and <211> axial directions, and the {100}, {110}, {111}, and {211} planar directions. A .05% resolution automatically controlled magnetic spectrometer was used. The data are presented graphically along with an extensive summary of data in the literature. The data taken cover a wider range of channels than has previously been examined, and are in agreement with the data of F. Eisen, et al., Radd. Eff. 13, 93 (1972).

The theory in the literature for channeling energy loss due to interaction with local electrons, core electrons, and distant valence electrons of the crystal atoms is summarized. Straggling is analyzed, and a computer program which calculates energy loss and straggling using this theory and the Moliere approximation to the Thomas Fermi potential, VTF, and the detailed silicon crystal structure is described. Values for the local electron density Zloc in each of the channels listed above are extracted from the data by graphical matching of the experimental and computer results.

Zeroth and second order contributions to Zloc as a function of distance from the center of the channel were computed from ∇2VTF = 4πρ for various channels in silicon. For data taken in this work and data of F. Eisen, et al., Rad. Eff. 13, 93 (1972), the calculated zeroth order contribution to Zloc lies between the experimentally extracted Zloc values obtained by using the peak and the leading edge of the transmission spectra, suggesting that the observed straggling is due both to statistical fluctuations and to path variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution, natural-abundance 13C spectra have been obtained from a wide variety of organic compounds; 13C chemical shifts and coupling constants have been correlated with other molecular properties.

Geminal and vicinal, carbon-proton couplings in benzene and the five- and six-membered aromatic heterocycles have been related to the corresponding proton-proton couplings in substituted ethylenes. The carbon-proton coupling constants in benzene are JCCH = + 1.0, JCCCH = +7.4 and JCCCH = -1.1 Hz. Extended Hückel wavefunctions are uniformly poor in explaining the long-range, carbon-proton couplings in aromatic systems.

Couplings between carbon and elements other than hydrogen have been observed in proton decoupled 13C spectra. All of the carbons in fluorobenzene and 1-fluoronaphthalene, but only six of the carbons in 2-fluoronaphthalene are coupled to the fluorine. One-bond, carbon-phosphorus coupling in trialkylphosphines is negative, while one-bond, carbon-phosphorus coupling in tetra-alkylphosphonium ions is positive. Atoms which do not use hybrid orbitals to form bonds to carbon (F, P(III), Se, Te) may have negative, one-bond coupling constants because of the failure of the average energy approximation. One-bond couplings between carbon and carbon, silicon, tin, lead and mercury appear to be explainable in terms of an effective nuclear charge and the s-bond order of the metal. Couplings between carbon and nitrogen and phosphorus (IV) have significant negative contributions to the Fermi contact coupling expression, though, within one series, correlations with s-bond order may be valid. Carbon-carbon coupling in cyclopropane derivatives (10-15 Hz) is consistent with a high degree of p character in the interior orbitals. Some two- and three-bond carbon-carbon coupling constants have also been observed.

Substituent effects of hydroxyl groups on the 13C chemical shifts of continuous-chain alkanes depend both on steric and electronic factors. The hydroxyl substituent effects in the long-chain, primary alcohols are α = -48.3, β = -10.2, and γ = +6.0 ppm. The upfield γ effect is attributed to steric crowding in the gauche conformations. Additivity of the hydroxyl and carbonyl and alkyl substituent effects in alkyl-substituted cyclohexanols and cyclohexanones has been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction K-p→K-π+n has been studied for incident kaon momenta of 2.0 GeV/c. A sample of 19,881 events was obtained by a measurement of film taken as part of the K-63 experiment in the Berkeley 72 inch bubble chamber.

Based upon our analysis, we have reached four conclusions. (1) The magnitude of the extrapolated Kπ cross section differs by a factor of 2 from the P-wave unitarity prediction and the K+n results; this is probably due to absorptive effects. (2) Fits to the moments yield precise values for the Kπ S-wave which agree with other recent statistically accurate experiments. (3) An anomalous peak is present in our backward K-p→(π+n) K- u-distribution. (4) We find a non-linear enhancement due to interference similiar to the one found by Bland et al. (Bland 1966).