4 resultados para Human Papillomavirus Type 33

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To better understand human diseases, much recent work has focused on proteins to either identify disease targets through proteomics or produce therapeutics via protein engineering. Noncanonical amino acids (ncAAs) are tools for altering the chemical and physical properties of proteins, providing a facile strategy not only to label proteins but also to engineer proteins with novel properties. My thesis research has focused on the development and applications of noncanonical amino acids in identifying, imaging, and engineering proteins for studying human diseases. Chapter 1 introduces the concept of ncAAs and reveals insights to how I chose my thesis projects.

ncAAs have been incorporated to tag and enrich newly synthesized proteins for mass spectrometry through a method termed BONCAT, or bioorthogonal noncanonical amino acid tagging. Chapter 2 describes the investigation of the proteomic response of human breast cancer cells to induced expression of tumor suppressor microRNA miR-126 by combining BONCAT with another proteomic method, SILAC or stable isotope labeling by amino acids in cell culture. This proteomic analysis led to the discovery of a direct target of miR-126, shedding new light on its role in suppressing cancer metastasis.

In addition to mass spectrometry, ncAAs can also be utilized to fluorescently label proteins. Chapter 3 details the synthesis of a set of cell-permeant cyclooctyne probes and demonstration of selective labeling of newly synthesized proteins in live mammalian cells using azidohomoalanine. Similar to live cell imaging, the ability to selectively label a particular cell type within a mixed cell population is important to interrogating many biological systems, such as tumor microenvironments. By taking advantage of the metabolic differences between cancer and normal cells, Chapter 5 discusses efforts to develop selective labeling of cancer cells using a glutamine analogue.

Furthermore, Chapter 4 describes the first demonstration of global replacement at polar amino acid positions and its application in developing an alternative PEGylation strategy for therapeutic proteins. Polar amino acids typically occupy solvent-exposed positions on the protein surface, and incorporation of noncanonical amino acids at these positions should allow easier modification and cause less perturbation compared to replacements at the interior positions of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the mechanisms of enzymes is crucial for our understanding of their role in biology and for designing methods to perturb or harness their activities for medical treatments, industrial processes, or biological engineering. One aspect of enzymes that makes them difficult to fully understand is that they are in constant motion, and these motions and the conformations adopted throughout these transitions often play a role in their function.

Traditionally, it has been difficult to isolate a protein in a particular conformation to determine what role each form plays in the reaction or biology of that enzyme. A new technology, computational protein design, makes the isolation of various conformations possible, and therefore is an extremely powerful tool in enabling a fuller understanding of the role a protein conformation plays in various biological processes.

One such protein that undergoes large structural shifts during different activities is human type II transglutaminase (TG2). TG2 is an enzyme that exists in two dramatically different conformational states: (1) an open, extended form, which is adopted upon the binding of calcium, and (2) a closed, compact form, which is adopted upon the binding of GTP or GDP. TG2 possess two separate active sites, each with a radically different activity. This open, calcium-bound form of TG2 is believed to act as a transglutaminse, where it catalyzes the formation of an isopeptide bond between the sidechain of a peptide-bound glutamine and a primary amine. The closed, GTP-bound conformation is believed to act as a GTPase. TG2 is also implicated in a variety of biological and pathological processes.

To better understand the effects of TG2’s conformations on its activities and pathological processes, we set out to design variants of TG2 isolated in either the closed or open conformations. We were able to design open-locked and closed-biased TG2 variants, and use these designs to unseat the current understanding of the activities and their concurrent conformations of TG2 and explore each conformation’s role in celiac disease models. This work also enabled us to help explain older confusing results in regards to this enzyme and its activities. The new model for TG2 activity has immense implications for our understanding of its functional capabilities in various environments, and for our ability to understand which conformations need to be inhibited in the design of new drugs for diseases in which TG2’s activities are believed to elicit pathological effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evoked response, a signal present in the electro-encephalogram when specific sense modalities are stimulated with brief sensory inputs, has not yet revealed as much about brain function as it apparently promised when first recorded in the late 1940's. One of the problems has been to record the responses at a large number of points on the surface of the head; thus in order to achieve greater spatial resolution than previously attained, a 50-channel recording system was designed to monitor experiments with human visually evoked responses.

Conventional voltage versus time plots of the responses were found inadequate as a means of making qualitative studies of such a large data space. This problem was solved by creating a graphical display of the responses in the form of equipotential maps of the activity at successive instants during the complete response. In order to ascertain the necessary complexity of any models of the responses, factor analytic procedures were used to show that models characterized by only five or six independent parameters could adequately represent the variability in all recording channels.

One type of equivalent source for the responses which meets these specifications is the electrostatic dipole. Two different dipole models were studied: the dipole in a homogeneous sphere and the dipole in a sphere comprised of two spherical shells (of different conductivities) concentric with and enclosing a homogeneous sphere of a third conductivity. These models were used to determine nonlinear least squares fits of dipole parameters to a given potential distribution on the surface of a spherical approximation to the head. Numerous tests of the procedures were conducted with problems having known solutions. After these theoretical studies demonstrated the applicability of the technique, the models were used to determine inverse solutions for the evoked response potentials at various times throughout the responses. It was found that reliable estimates of the location and strength of cortical activity were obtained, and that the two models differed only slightly in their inverse solutions. These techniques enabled information flow in the brain, as indicated by locations and strengths of active sites, to be followed throughout the evoked response.