13 resultados para Gamma rays.

em CaltechTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission at low energies and inverse Compton at high energies is well established, important aspects of blazars are not well understood. In particular, the location of the gamma-ray emission region is not clearly established, with some theories favoring a location close to the central engine, while others place it at parsec scales in the radio jet.

We developed a program to locate the gamma-ray emission site in blazars, through the study of correlated variations between their gamma-ray and radio-wave emission. Correlated variations are expected when there is a relation between emission processes at both bands, while delays tell us about the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi) north of -20 degrees declination. This program complements the continuous monitoring of gamma-rays by Fermi.

Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations that account for the uneven sampling and noise properties of the light curves, which are modeled as red-noise processes with a simple power-law power spectral density. We found that out of 86 sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34 and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus disfavoring the model of Blandford and Levinson (1995), while other cases are inconclusive. These findings show that continuous monitoring over long time periods is required to understand the cross-correlation between gamma-ray and radio-wave variability in most blazars.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energies and relative intensities of gamma transitions in 152Sm, 152Gd, 154Gd, 166Er, and 232U following radioactive decay have been measured with a Ge(Li) spectrometer. A peak fitting program has been developed to determine gamma ray energies and relative intensities with precision sufficient to give a meaningful test of nuclear models. Several previously unobserved gamma rays were placed in the nuclear level schemes. Particular attention has been paid to transitions from the beta and gamma vibrational bands, since the gamma ray branching ratios are sensitive tests of configuration mixing in the nuclear levels. As the reduced branching ratios depend on the multipolarity of the gamma transitions, experiments were performed to measure multipole mixing ratios for transitions from the gamma vibrational band. In 154Gd, angular correlation experiments showed that transitions from the gamma band to the ground state band were predominantly electric quadrupole, in agreement with the rotational model. In 232U, the internal conversion spectrum has been studied with a Si(Li) spectrometer constructed for electron spectroscopy. The strength of electric monopole transitions and the multipolarity of some gamma transitions have been determined from the measured relative electron intensities.

The results of the experiments have been compared with the rotational model and several microscopic models. Relative B(E2) strengths for transitions from the gamma band in 232U and 166Er are in good agreement with a single parameter band mixing model, with values of z2= 0.025(10) and 0.046(2), respectively. Neither the beta nor the gamma band transition strengths in 152Sm and 154Gd can be accounted for by a single parameter theory, nor can agreement be found by considering the large mixing found between the beta and gamma bands. The relative B(E2) strength for transitions from the gamma band to the beta band in 232U is found to be five times greater than the strength to the ground state band, indicating collective transitions with strength approximately 15 single particle units.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pulsars emit radiation over an extremely wide frequency range, from radio through gamma. Recently, systems in which this radiation significantly alters the atmospheres of low-mass pulsar companions have been discovered. These systems, ranging from ones with highly anisotropic heating to those with transient X-ray emissions, represent an exciting opportunity to investigate pulsars through the changes they induce in their companions. In this work, we present both analytic and numerical work investigating these phenomena, with a particular focus on atmospheric heat transport, transient phenomena, and the possibility of deep heating via gamma rays. We find that certain classes of binary systems may explain decadal-timescale X-ray transient phenomena, as well as the formation of so-called redback companion systems. We also posit an explanation for the formation of high-eccentricity millisecond pulsars with white dwarf companions. In addition, we examine the temperature anisotropy induced by the Pulsar in its companion, and demonstrate that this may be used to infer properties of both the companion and the Pulsar wind. Finally, we explore the possibility of spontaneously generated banded winds in rapidly rotating convecting objects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cross sections for the reaction 12C(α,γ)16O have been measured for a range of center-of-mass alpha particle energies extending from 1.72 MeV to 2.94 MeV. Two 8"x5" NaI (Tℓ) crystals were used to detect gamma rays; time-of-flight technique was employed to suppress cosmic ray background and background due to neutrons arising mainly from the 13C(α,n)16O reaction. Angular distributions were measured at center-of-mass alpha energies of 2.18, 2.42, 2.56 and 2.83 MeV. Upper limits were placed on the amount of radiation cascading through the 6.92 or 7.12-MeV states in 16O. By means of theoretical fits to the measured electric dipole component of the total cross section, in which interference between the 1¯ states in 16O at 7.12 MeV and at 9.60 MeV is taken into account, it is possible to extract the dimensionless, reduced-alpha-width of the 7.12-MeV state in 16O. A three-level R-matrix parameterization of the data yields the width Θα,F2 = 0.14+0.10-0.08. A "hybrid" R-matrix-optical-model parameterization yields Θα,F2 = 0.11+0.11-0.07. This quantity is of crucial importance in determining the abundances of 12C and 16O at the end of helium burning in stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Described in this thesis are measurements made of the thick-target neutron yield from the reaction 13C(α, n)16O. The yield was determined for laboratory bombarding energies between 0.475 and 0.700 MeV, using a stilbene crystal neutron detector and pulse-shape discrimination to eliminate gamma rays. Stellar temperatures between 2.5 and 4.5 x 108 oK are involved in this energy region. From the neutron yield was extracted the astrophysical cross-section factor S(E), which was found to fit a linear function: S(E) = [(5.48 ± 1.77) + (12.05 ± 3.91)E] x 105 MeV-barns, center-of-mass system. The stellar rate of the 13C(α, n)16O reaction if calculated, and discussed with reference to helium burning and neutron production in the core of a giant star.

Results are also presented of measurements carried out on the reaction 9Be(α, n)12C, taken with a thin Be target. The bombarding energy-range covered was from 0.340 to 0.680 MeV, with excitation curves for the ground- and first excited-state neutrons being reported. Some angular distributions were also measured. Resonances were found at bombarding energies of ELAB = 0.520 MeV (ECM = 0.360 MeV, Γ ~ 55 keV CM, ωγ = 3.79 eV CM) and ELAB = 0.600 MeV (ECM = 0.415 MeV, Γ ˂ 4 keV CM, ωγ = 0.88 eV CM). The astrophysical rate of the 9Be(α, n)12C reaction due to these resonances is calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a measurement of direct CP violation in b to s+gamma Acp, and the measurement of a difference between Acp for neutral B and charged B mesons, Delta A_{X_s\gamma}, using 429 inverse femtobarn of data recorded at the Upsilon(4S) resonance with the BABAR detector. B mesons are reconstructed from 16 exclusive final states. Particle identification is done using an algorithm based on Error Correcting Output Code with an exhaustive matrix. Background rejection and best candidate selection are done using two decision tree-based classifiers. We found $\acp = 1.73%+-1.93%+-1.02% and Delta A_X_sgamma = 4.97%+-3.90%+-1.45% where the uncertainties are statistical and systematic respectively. Based on the measured value of Delta A_X_sgamma, we determine a 90% confidence interval for Im C_8g/C_7gamma, where C_7gamma and C_8g are Wilson coefficients for New Physics amplitudes, at -1.64 < Im C_8g/C_7gamma < 6.52.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of the Galactic center region black hole candidate 1E 1740.7-2942 have been carried out using the Caltech Gamma-Ray Imaging Payload (GRIP), the Röntgensatellit (ROSAT) and the Very Large Array (VLA). These multiwavelength observations have helped to establish the association between a bright emitter of hard X-rays and soft γ-rays, the compact core of a double radio jet source, and the X-ray source, 1E 1740.7-2942. They have also provided information on the X-ray and hard X-ray spectrum.

The Galactic center region was observed by GRIP during balloon flights from Alice Springs, NT, Australia on 1988 April 12 and 1989 April 3. These observations revealed that 1E 1740.7-2942 was the strongest source of hard X-rays within ~10° of the Galactic center. The source spectrum from each flight is well fit by a single power law in the energy range 35-200 keV. The best-fit photon indices and 100 keV normalizations are: γ = (2.05 ± 0.15) and K_(100) = (8.5 ± 0.5) x 10^(-5) cm^(-2) s^(-1) keV^(-1) and γ = (2.2 ± 0.3) and K_(100) = (7.0 ± 0.7) x 10^(-5) cm^(-2) s^(-1) keV^(-1) for the 1988 and 1989 observations respectively. No flux above 200 keV was detected during either observation. These values are consistent with a constant spectrum and indicate that 1E 1740.7-2942 was in its normal hard X-ray emission state. A search on one hour time scales showed no evidence for variability.

The ROSAT HRI observed 1E 1740.7-2942 during the period 1991 March 20-24. An improved source location has been derived from this observation. The best fit coordinates (J2000) are: Right Ascension = 17^h43^m54^s.9, Declination = -29°44'45".3, with a 90% confidence error circle of radius 8".5. The PSPC observation was split between periods from 1992 September 28- October 4 and 1993 March 23-28. A thermal bremsstrahlung model fit to the data yields a column density of N_H = 1.12^(+1.51)_(0.18) x cm^(-2) , consistent with earlier X- ray measurements.

We observed the region of the Einstein IPC error circle for 1E 1740.7-2942 with the VLA at 1.5 and 4.9 GHz on 1989 March 2. The 4.9 GHz observation revealed two sources. Source 'A', which is the core of a double aligned radio jet source (Mirabel et al. 1992), lies within our ROSAT error circle, further strengthening its identification with 1E 1740.7-2942.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coarsening kinetics of Ni3 Si(γ') precipitate in a binary Ni-Si alloy containing 6.5 wt. % silicon was studied by magnetic techniques and transmission electronmicroscopy. A calibration curve was established to determine the concentration of silicon in the matrix. The variation of the Si content of the Ni-rich matrix as a function of time follows Lifshitz and Wagner theory for diffusion controlled coarsening phenomena. The estimated values of equilibrium solubility of silicon in the matrix represent the true coherent equilibrium solubilities.

The experimental particle-size distributions and average particle size were determined from dark field electron micrographs. The average particle size varies linearly with t-1/3 as suggested by Lifshitz and Wagner. The experimental distributions of particle sizes differ slightly from the theoretical curve at the early stages of aging, but the agreement is satisfactory at the later stages. The values of diffusion coefficient of silicon, interfacial free energy and activation energy were calculated from the results of coarsening kinetics. The experimental value of effective diffusion coefficient is in satisfactory agreement with the value predicted by the application of irreversible the rmodynamics to the process of volume constrained growth of coherent precipitate during coarsening. The coherent γ' particles in Ni-Sialloy unlike those in Ni-Al and Ni-Ti seem to lose coherency at high temperature. A mechanism for the formation of semi-coherent precipitate is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotopic composition of hydrogen and helium in solar cosmic rays provides a means of studying solar flare particle acceleration mechanisms since the enhanced relative abundance of rare isotopes, such as 2H, 3H and 3He, is due to their production by inelastic nuclear collisions in the solar atmosphere during the flare. In this work the Caltech Electron/Isotope Spectrometer on the IMP-7 spacecraft has been used to measure this isotopic composition. The response of the dE/dx-E particle telescope is discussed and alpha particle channeling in thin detectors is identified as an important background source affecting measurement of low values of (3He/4He).

The following flare-averaged results are obtained for the period, October, 1972 - November, 1973: (2H/1H) = 7+10-6 X 10-6 (1.6 - 8.6 MeV/nuc), (3H/1H) less than 3.4 x 10-6 (1.2 - 6.8 MeV/nuc), (3He/4He) = (9 ± 4) x 10-3, (3He/1H) = (1.7 ± 0.7) x 10-4 (3.1 - 15.0 MeV/nuc). The deuterium and tritium ratios are significantly lower than the same ratios at higher energies, suggesting that the deuterium and tritium spectra are harder than that of the protons. They are, however, consistent with the same thin target model relativistic path length of ~ 1 g/cm2 (or equivalently ~ 0.3 g/cm2 at 30 MeV/nuc) which is implied by the higher energy results. The 3He results, consistent with previous observations, would imply a path length at least 3 times as long, but the observations may be contaminated by small 3He rich solar events.

During 1973 three "3He rich events," containing much more 3He than 2H or 3H were observed on 14 February, 29 June and 5 September. Although the total production cross sections for 2H,3H and 3He are comparable, an upper limit to (2H/3He) and (3H/3He) was 0.053 (2.9-6.8 MeV/nuc), summing over the three events. This upper limit is marginally consistent with Ramaty and Kozlovsky's thick target model which accounts for such events by the nuclear reaction kinematics and directional properties of the flare acceleration process. The 5 September event was particularly significant in that much more 3He was observed than 4He and the fluxes of 3He and 1H were about equal. The range of (3He/4He) for such events reported to date is 0.2 to ~ 6 while (3He/1H) extends from 10-3 to ~ 1. The role of backscattered and mirroring protons and alphas in accounting for such variations is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotopic composition of the enhanced low energy nitrogen and oxygen cosmic rays can provide information regarding the source of these particles. Using the Caltech Electron/Isotope Spectrometer aboard the IMP-7 satellite, a measurement of this isotopic composition was made. To determine the isotope response of the instrument, a calibration was performed, and it was determined that the standard range-energy tables were inadequate to calculate the isotope response. From the calibration, corrections to the standard range-energy tables were obtained which can be used to calculate the isotope response of this and similar instruments.

The low energy nitrogen and oxygen cosmic rays were determined to be primarily ^(14)N and ^(16)O. Upper limits were obtained for the abundances of the other stable nitrogen and oxygen isotopes. To the 84% confidence level the isotopic abundances are: ^(15)N/N ≤ 0.26 (5.6- 12.7 MeV/nucleon), ^(17)0/0 ≤ 0.13 (7.0- 11.8 MeV/nucleon), (18)0/0 ≤ 0.12 (7.0 - 11.2 MeV/nucleon). The nitrogen composition differs from higher energy measurements which indicate that ^(15)N, which is thought to be secondary, is the dominant isotope. This implies that the low energy enhanced cosmic rays are not part of the same population as the higher energy cosmic rays and that they have not passed through enough material to produce a large fraction of ^(15)N. The isotopic composition of the low energy enhanced nitrogen and oxygen is consistent with the local acceleration theory of Fisk, Kozlovsky, and Ramaty, in which interstellar material is accelerated to several MeV/nucleon. If, on the other hand, the low energy nitrogen and oxygen result from nucleosynthesis in a galactic source, then the nucleosynthesis processes which produce an enhancement of nitrogen and oxygen and a depletion of carbon are restricted to producing predominantly ^(14)N and ^(16)O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of cosmic rays through interstellar space has been investigated with the view of determining what particles can traverse astronomical distances without serious loss of energy. The principal method of loss of energy of high energy particles is by interaction with radiation. It is found that high energy (1013-1018ev) electrons drop to one-tenth their energy in 108 light years in the radiation density in the galaxy and that protons are not significantly affected in this distance. The origin of the cosmic rays is not known so that various hypotheses as to their origin are examined. If the source is near a star it is found that the interaction of electrons and photons with the stellar radiation field and the interaction of electrons with the stellar magnetic field limit the amount of energy which these particles can carry away from the star. However, the interaction is not strong enough to affect the energy of protons or light nuclei appreciably. The chief uncertainty in the results is due to the possible existence of general galactic magnetic field. The main conclusion reached is that if there is a general galactic magnetic field, then the primary spectrum has very few photons, only low energy (˂ 1013 ev) electrons and the higher energy particles are primarily protons regardless of the source mechanism, and if there is no general galactic magnetic field, then the source of cosmic rays accelerates mainly protons and the present rate of production is much less than that in the past.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An array of two spark chambers and six trays of plastic scintillation counters was used to search for unaccompanied fractionally charged particles in cosmic rays near sea level. No acceptable events were found with energy losses by ionization between 0.04 and 0.7 that of unit-charged minimum-ionizing particles. New 90%-confidence upper limits were thereby established for the fluxes of fractionally charged particles in cosmic rays, namely, (1.04 ± 0.07)x10-10 and (2.03 ± 0.16)x10-10 cm-2sr-1sec-1 for minimum-ionizing particles with charges 1/3 and 2/3, respectively.

In order to be certain that the spark chambers could have functioned for the low levels of ionization expected from particles with small fractional charges, tests were conducted to estimate the efficiency of the chambers as they had been used in this experiment. These tests showed that the spark-chamber system with the track-selection criteria used might have been over 99% efficient for the entire range of energy losses considered.

Lower limits were then obtained for the mass of a quark by considering the above flux limits and a particular model for the production of quarks in cosmic rays. In this model, which is one involving the multi-peripheral Regge hypothesis, the production cross section and a corresponding mass limit are critically dependent on the Regge trajectory assigned to a quark. If quarks are "elementary'' with a flat trajectory, the mass of a quark can be expected to be at least 6 ± 2 BeV/c2. If quarks have a trajectory with unit slope, just as the existing hadrons do, the mass of a quark might be as small as 1.3 ± 0.2 BeV/c2. For a trajectory with unit slope and a mass larger than a couple of BeV/c2, the production cross section may be so low that quarks might never be observed in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic Kαl x-ray isotope shifts have been measured for Sn 116-124, Sm 148-154, W 182-184, W 184-186, and W 182-186 using a curved crystal Cauchois spectrometer. The analysis of the measurements has included the electrostatic volume effect, screening by the transition electron as well as the non-transition electrons, normal and specific mass shifts, dynamical nuclear qudrupole polarization, and a radiative correction effect of the electron magnetic moment in the nuclear charge radii are obtained. Where other experimental data are available, the agreement with the present measurements is satisfactory. Comparisons with several nuclear model predictions yield only partial agreement.