3 resultados para Cerebral cortex

em CaltechTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, we explore the density of the microglia in the cerebral and cerebellar cortices of individuals with autism to investigate the hypothesis that neuroinflammation is involved in autism. We describe in our findings an increase in microglial density in two disparate cortical regions, frontal insular cortex and visual cortex, in individuals with autism (Tetreault et al., 2012). Our results imply that there is a global increase in the microglial density and neuroinflammation in the cerebral cortex of individuals with autism.

We expanded our cerebellar study to additional neurodevelopmental disorders that exhibit similar behaviors to autism spectrum disorder and have known cerebellar pathology. We subsequently found a more than threefold increase in the microglial density specific to the molecular layer of the cerebellum, which is the region of the Purkinje and parallel fiber synapses, in individuals with autism and Rett syndrome. Moreover, we report that not only is there an increase in microglia density in the molecular layer, the microglial cell bodies are significantly larger in perimeter and area in individuals with autism spectrum disorder and Rett syndrome compared to controls that implies that the microglia are activated. Additionally, an individual with Angelman syndrome and the sibling of an individual with autism have microglial densities similar to the individuals with autism and Rett syndrome. By contrast, an individual with Joubert syndrome, which is a developmental hypoplasia of the cerebellar vermis, had a normal density of microglia, indicating the specific pathology in the cerebellum does not necessarily result in increased microglial densities. We found a significant decrease in Purkinje cells specific to the cerebellar vermis in individuals with autism.

These findings indicate the importance for investigation of the Purkinje synapses in autism and that the relationship between the microglia and the synapses is of great utility in understanding the pathology in autism. Together, these data provide further evidence for the neuroinflammation hypothesis in autism and a basis for future investigation of neuroinflammation in autism. In particular, investigating the function of microglia in modifying synaptic connectivity in the cerebellum may provide key insights into developing therapeutics in autism spectrum disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory-motor circuits course through the parietal cortex of the human and monkey brain. How parietal cortex manipulates these signals has been an important question in behavioral neuroscience. This thesis presents experiments that explore the contributions of monkey parietal cortex to sensory-motor processing, with an emphasis on the area's contributions to reaching. First, it is shown that parietal cortex is organized into subregions devoted to specific movements. Area LIP encodes plans to make saccadic eye movements. A nearby area, the parietal reach region (PRR), plans reaches. A series of experiments are then described which explore the contributions of PRR to reach planning. Reach plans are represented in an eye-centered reference frame in PRR. This representation is shown to be stable across eye movements. When a sequence of reaches is planned, only the impending movement is represented in PRR, showing that the area is more related to movement planning than to storing the memory of reach targets. PRR resembles area LIP in each of these properties: the two areas may provide a substrate for hand-eye coordination. These findings yield new perspectives on the functions of the parietal cortex and on the organization of sensory-motor processing in primate brains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, research efforts into directly interfacing with the neurons of individuals with motor deficits have increased. The goal of such research is clear: Enable individuals affected by paralysis or amputation to regain control of their environments by manipulating external devices with thought alone. Though the motor cortices are the usual brain areas upon which neural prosthetics depend, research into the parietal lobe and its subregions, primarily in non-human primates, has uncovered alternative areas that could also benefit neural interfaces. Similar to the motor cortical areas, parietal regions can supply information about the trajectories of movements. In addition, the parietal lobe also contains cognitive signals like movement goals and intentions. But, these areas are also known to be tuned to saccadic eye movements, which could interfere with the function of a prosthetic designed to capture motor intentions only. In this thesis, we develop and examine the functionality of a neural prosthetic with a non-human primate model using the superior parietal lobe to examine the effectiveness of such an interface and the effects of unconstrained eye movements in a task that more closely simulates clinical applications. Additionally, we examine methods for improving usability of such interfaces.

The parietal cortex is also believed to contain neural signals relating to monitoring of the state of the limbs through visual and somatosensory feedback. In one of the world’s first clinical neural prosthetics based on the human parietal lobe, we examine the extent to which feedback regarding the state of a movement effector alters parietal neural signals and what the implications are for motor neural prosthetics and how this informs our understanding of this area of the human brain.