37 resultados para zymogen
Resumo:
The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B'/B followed by the herein newly identified C'/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B'/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1-P8) and P1' are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates.
Resumo:
SKI-l/SlP protease is a member of the proprotein convertase family, with several functions in cellular metabolism and homeostasis. It is responsible for the processing of several cellular substrates, including ATF6, SREBPs, and GlcNAc-1- phosphotranspherase. Furthermore, SKI-1/SlP is also responsible for maturation of arenavirus surface glycoprotein into GP1 and GP2 subunits. This processing is a strict requirement in order to achieve fully mature and fusion-competent virions. Furthermore, SKI-1/SlP itself is synthesized as an inactive zymogen, requiring sequential autocatalytic processing at several sites (B'/B and C) in its prodomain in order to mature and become fully active. Our project focused on the analysis of SKI- 1/S1P prodomain in the biogenesis of the active enzyme. In this context we have additionally developed and characterized a novel cell-based sensor for assessment of cellular activity of the enzyme, with a potential application in screening for novel SKI- 1/S1P inhibitors. In a first aim we have analysed the relevance of cleavage motifs found in the enzyme prodomain. Using molecular and biochemistry tools we have identified and characterized a novel C' maturation site. Furthermore, we found that SKI-1/SlP autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. Contrasting with other proprotein convertases, incompletely matured intermediates of SKI-1/SlP exhibit full catalytic activity toward selected substrates. In a second aim, we turned our attention to the structural basis of SKI-1/SlP N- terminus assisted folding. Studying the folding and activity of prodomain-truncated forms of the enzyme we found that a minimal folding unit is contained in the AB region. Deletion of the BC sequence affected auto-maturation but not folding, and partial activity was retained. However, the BC region seemed required for complete and full activity. Phylogenetic analyses showed that the AB sequence is highly conserved, while the BC fragment is variable in sequence and length. Specifically, replacement of the human prodomain with that of Drosophila, resulted in a fully mature and active chimeric enzyme, suggesting an evolution process of SKI-1/SlP prodomain towards a more complex arrangement and steps of activation. Overall, the additional data we have produced might provide fundamental knowledge crucial for the development of novel SKI-1/SlP inhibitors while also providing new SKI- 1/S1P variants with potential use in crystallization purpose. -- SKI-l/SlP est une protéase membre de la famille des proprotéines convertases (PCs), avec plusieurs fonctions dans le métabolisme cellulaire et de l'homéostasie. Il est responsable pour la maturation de plusieurs substrats cellulaires, y compris ATF6, SREBPs et GlcNAc-1-phosphotranspherase. SKI-l/SlP est également responsable pour la maturation de la glycoprotéine des arénavirus, une exigence stricte pour atteindre des virions infectieuse. Synthétisé comme un zymogène inactif, SKI-l/SlP nécessite d'un traitement autocatalytique séquentiel sur plusieurs sites (B'/B et C) de son prodomaine afin de devenir pleinement active. Notre projet était axé sur l'analyse de SKI-l/SlP prodomaine dans la biogenèse de l'enzyme. Dans ce contexte, nous avons développé un nouveau senseur-cellulaire pour l'évaluation de l'activité de l'enzyme. Ce dernier pourrait avoir une potentielle application dans l'identification de nouveaux inhibiteurs de SKI-l/SlP. Premièrement, nous avons analysé la pertinence des motifs de clivage trouvés dans le prodomaine de l'enzyme. En utilisant des outils moléculaires et biochimiques, nous avons identifié et caractérisé un nouveau site de maturation (C'). Aussi, nous avons constaté que la maturation de SKI-l/SlP a des intermédiaires dont le domaine catalytique reste associé à des fragments du prodomaine de différentes longueurs. Contrastant avec d'autres PCs, les intermédiaires partiellement matures de SKI-1 / SIP présentent une activité catalytique complète envers des substrats spécifiques. Dans un deuxième but nous avons tourné notre attention sur la base structurelle du pliage de SKI-l/SlP assisté par son N-terminus: En étudiant l'activité et pliage des formes tronquées dans le prodomaine de l'enzyme, nous avons constaté qu'une unité de pliage minimale est contenue dans la région de l'AB. La suppression de la séquence d'auto-BC affecte la maturation mais pas le pliage, et l'activité partielle est maintenue. Cependant, la région BC semble nécessaire pour une activité complète. Les analyses phylogénétiques ont montré que la séquence AB est fortement conservée, tandis que le fragment de BC est variable en longueur et en séquence. En particulier, le remplacement du prodomaine humain avec celui de la drosophile, a donné lieu à une enzyme chimérique complètement mature et active. Suggérant un processus d'évolution du prodomaine vers un arrangement et des mesures d'activation plus complexe. Globalement, ces donnees supplémentaires augment les connaissances fondamentales cruciales pour le développement de nouveaux inhibiteurs de SKI-1/ SIP, tout en offrant de nouvelles variantes SKI-1 / SIP dans le but d'obtenir la structure cristallographique de l'enzyme.
Resumo:
The present research describes an efficient procedure to obtain high levels of trypsinogen and chymotrypsinogen by using a simple, rapid, and easily reproducible method. The extraction process and the time-course of activation of zymogens can be carried out in a single laboratory period, without sophisticated equipment. The main objective was to prepare a laboratory class that would stimulate student interest in enzyme regulation, exploring the fact that the catalytic activity of some enzymes is regulated by different mechanisms. The regulation of proteolytic enzymes requires the synthesis of an inactive zymogen and its being irreversibly switched on by specific proteolytic cleavage.
Resumo:
Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic l-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.
Resumo:
Hsp10 (10-kDa heat shock protein, also known as chaperonin 10 or Cpn10) is a co-chaperone for Hsp60 in the protein folding process. This protein has also been shown to be identical to the early pregnancy factor, which is an immunosuppressive growth factor found in maternal serum. In this study we have used immunogold electron microscopy to study the subcellular localization of Hsp10 in rat tissues sections embedded in LR Gold resin employing polyclonal antibodies raised against different regions of human Hsp10. In all rat tissues examined including liver, heart, pancreas, kidney, anterior pituitary, salivary gland, thyroid, and adrenal gland, antibodies to Hsp10 showed strong labeling of mitochondria. However, in a number of tissues, in addition to the mitochondrial labeling, strong and highly specific labeling with the Hsp10 antibodies was also observed in several extramitochondrial compartments. These sites included zymogen granules in pancreatic acinar cells, growth hormone granules in anterior pituitary, and secretory granules in PP pancreatic islet cells. Additionally, the mature red blood cells which lack mitochondria, also showed strong reactivity with the Hsp10 antibodies. The observed labeling with the Hsp10 antibodies, both within mitochondria as well as in other compartments/cells, was abolished upon omission of the primary antibodies or upon preadsorption of the primary antibodies with the purified recombinant human Hsp10. These results provide evidence that similar to a number of other recently described mitochondrial proteins (viz., Hsp60, tumor necrosis factor receptor-associated protein- 1, P32 (gC1q-R) protein, and cytochrome c), Hsp10 is also found at a variety of specific extramitochondrial sites in normal rat tissue. These results raise important questions as to how these mitochondrial proteins are translocated to other compartments and their possible function(s) at these sites. The presence of these proteins at extramitochondrial sites in normal tissues has important implications concerning the role of mitochondria in apoptosis and genetic diseases.
Resumo:
The involvement of the gastrointestinal tract in the co-infection of HIV and Leishmania is rarely reported. We report the case of an HIV-infected adult man co-infected with a disseminated form of leishmaniasis involving the liver, lymph nodes, spleen and, as a feature reported for the first time in the English literature, the pancreas. Light microscopy showed amastigote forms of Leishmania in pancreatic macrophages and immunohistochemical staining revealed antigens for Leishmania and also for HIV p24. Microscopic and ultrastructural analysis revealed severe acinar atrophy, decreased zymogen granules in the acinar cytoplasm and also nuclear abnormalities such as pyknosis, hyperchromatism and thickened chromatin. These findings might correspond to the histologic pattern of protein-energy malnutrition in the pancreas as shown in our previous study in pancreas with AIDS and no Leishmania. In this particular case, the protein-energy malnutrition may be due to cirrhosis, or, Leishmania or HIV infection or all mixed. We believe that this case represents the morphologic substratum of the protein energy malnutrition in pancreas induced by the HIV infection. Further studies are needed to elucidate these issues.
Resumo:
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.
Resumo:
Pancreatic acinar cells of euthermic, hibernating and arousing individuals of the hazel dormouse Muscardinus avellanarius (Gliridae) have been observed at the electron-microscopic level and analysed by means of ultrastructural morphometry and immunocytochemistry in order to investigate possible fine structural changes of cellular components during periods of strikingly different degrees of metabolic activity. During hibernation, the cisternae of the rough endoplasmic reticulum (RER) flatten assuming a parallel pattern, the Golgi apparatus is extremely reduced and the mitochondria contain many electron-dense particles. The cell nuclei appear irregularly shaped, with deep indentations containing small zymogen granules. They also contain abundant coiled bodies and unusual constituents, such as amorphous bodies and dense granular bodies. Large numbers of zymogen granules occur in all animals. However, the acinar lumina are open and filled with zymogen only in euthermic animals, whereas, in hibernating and arousing individuals, they appear to be closed. Morphometrical analyses indicate that, in pancreatic acinar cells, nuclei and zymogen granules significantly decrease in size from euthermia to hibernation, probably reflecting a drastic decrease of metabolic activities, mainly protein synthesis and processing. In all the studied animals, immunocytochemistry with specific antibodies has revealed an increasing gradient in alpha-amylase content along the RER-Golgi-zymogen granule pathway, reflecting the protein concentration along the secretory pathway. Moreover, during deep hibernation, significantly larger amounts of alpha-amylase accumulate in RER and zymogen granules in comparison to the other seasonal phases analysed. Upon arousal, all cytoplasmic and nuclear constituents restore their euthermic aspect and all morphometrical and immunocytochemical parameters exhibit the euthermic values, thereby indicating a rapid resumption of metabolic activities.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
Nutritional factors, especially the protein and fat content of the diet, may change pancreatic morphology after ethanol induced injury. This study was performed to delineate the combined effects of a low fat diet and longterm ethanol ingestion on the rat pancreas. Male Sprague-Dawley rats were maintained with five different diets for 12 weeks and the pancreas removed on the day they were killed. Rats fed a very low fat diet without ethanol (5% of total calories as lipid) developed malnutrition, pancreatic steatosis, and reduction in zymogen granules content. Animals fed a 35% lipid diet with ethanol also developed pancreatic steatosis but changes in zymogen granules content were not detected. Both malnutrition and longterm ethanol consumption increased pancreatic cholesterol ester content, and their effects were additive. Pancreatic steatosis was accompanied with hypercholesterolaemia. Amylase, lipase, and cholesterol esterase content were reduced in malnourished rats; but longterm ethanol ingestion, regardless of the nutritional state, increased lipase content and decreased amylase. It is suggested that high serum cholesterol concentrations and increased pancreatic lipase activity could cause accumulation of cholesterol esters in acinar cells. Fat accumulation in the pancreas has been reported as the earliest histopathological feature in alcoholic patients and may be responsible for cytotoxic effects on the acinar cells at the level of the cell membrane. Although it is difficult to extrapolate results in this animal study to the human situation, the results presented in this work might explain the higher incidence of pancreatitis is malnourished populations as well as in alcoholic subjects that is reported in dietary surveys.
Resumo:
The effect of several ions (Cl-, Na+, K+, Ca2+) on the rate of plasminogen (Pg) activation by recombinant staphylokinase (rSTA) is reported. Both monovalent and divalent ions affect the rate at which Pg is activated by rSTA, in a concentration-dependent manner (range 0-100 mM). In almost all cases, a decrease of the initial velocity of activation was observed. Cl- showed the most striking inhibitory effect at low concentrations (64% at 10 mM). However, in the presence of a fibrin surface, this inhibition was attenuated to 38%. Surprisingly, 10 mM Ca2+ enhanced the Pg activation rate 21% when a polymerized fibrin matrix was present. These data support the idea that ions can modulate the rate of Pg activation through a mechanism that may be associated with changes in the molecular conformation of the zymogen. This effect is strongly dependent on the presence of a fibrin clot.
Resumo:
Certain serine proteases signal to cells by cleaving protease-activated receptors (PARs) and thereby regulate hemostasis, inflammation, pain and healing. However, in many tissues the proteases that activate PARs are unknown. Although pancreatic trypsin may be a physiological agonist of PAR(2) and PAR(4) in the small intestine and pancreas, these receptors are expressed by cells not normally exposed pancreatic trypsin. We investigated whether extrapancreatic forms of trypsin are PAR agonists. Epithelial cells lines from prostate, colon, and airway and human colonic mucosa expressed mRNA encoding PAR(2), trypsinogen IV, and enteropeptidase, which activates the zymogen. Immunoreactive trypsinogen IV was detected in vesicles in these cells. Trypsinogen IV was cloned from PC-3 cells and expressed in CHO cells, where it was also localized to cytoplasmic vesicles. We expressed trypsinogen IV with an N-terminal Igkappa signal peptide to direct constitutive secretion and allow enzymatic characterization. Treatment of conditioned medium with enteropeptidase reduced the apparent molecular mass of trypsinogen IV from 36 to 30 kDa and generated enzymatic activity, consistent with formation of trypsin IV. In contrast to pancreatic trypsin, trypsin IV was completely resistant to inhibition by polypeptide inhibitors. Exposure of cell lines expressing PAR(2) and PAR(4) to trypsin IV increased [Ca(2+)](i) and strongly desensitized cells to PAR agonists, whereas there were no responses in cells lacking these receptors. Thus, trypsin IV is a potential agonist of PAR(2) and PAR(4) in epithelial tissues where its resistance to endogenous trypsin inhibitors may permit prolonged signaling.
Resumo:
The protein C pathway plays an important role in the control and regulation of the blood coagulation cascade and prevents the propagation of the clotting process on the endothelium surface. In physiological systems, protein C activation is catalyzed by thrombin, which requires thrombomodulin as a cofactor. The protein C activator from Agkistrodon contortrix contortrix acts directly on the zymogen of protein C converting it into the active form, independently of thrombomodulin. Suitable crystals of the protein C activator from Agkistrodon contortrix contortrix were obtained from a solution containing 2 M ammonium sulfate as the precipitant and these crystals diffracted to 1.95 angstrom resolution at a synchrotron beamline. The crystalline array belongs to the monoclinic space group C2 with unit cell dimensions a=80.4, b = 63.3 and c = 48.2 angstrom, alpha = gamma = 90.0 degrees and beta = 90.8 degrees. (C) 2005 Elsevier B.V. All rights reserved.