51 resultados para zooxanthellae
Resumo:
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by Polymerase Chain Reaction (PCR). PCR products were analyzed using Single Stranded Conformational Polymorphism (SSCP) and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of 8 coral species studied, and there are at least two clades of Symbiodinium from Kish Island. Clade D was detected from 8 of the coral species while clade C90 was found in 2 of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf.
Resumo:
The small subunit rDNA sequence of Maristentor dinoferus (Lobban, Schefter, Simpson, Pochon, Pawlowski, and Foissner, 2002) was determined and compared with sequences from other Heterotrichea and Karyorelictea. Maristentor resembles Stentor in basic morphology and had been provisionally assigned to Stentoridae. However, our phylogenetic analyses show that Maristentor is more closely related to Folliculinidae. Our results support the creation of a separate family for Maristentor, Maristentoridae n. fam., and also confirm the phylogenetic grouping of Folliculindae, Stentoridae, Blepharismidae, and Maristentoridae, which we informally call 'stentorids'. Maristentor, rather than Stentor itself, appears to be most significant in understanding the origins of folliculinids from their aloricate ancestors. Our analyses suggest continued uncertainty in the exact placement of the root of heterotrichs with this phylogenetic marker.
Resumo:
We have developed a new simple method for transport, storage, and analysis of genetic material from the corals Agaricia agaricites, Dendrogyra cylindrica, Eusmilia ancora, Meandrina meandrites, Montastrea annularis, Porites astreoides, Porites furcata, Porites porites, and Siderastrea siderea at room temperature. All species yielded sufficient DNA from a single FTA(R) card (19 mug-43 ng) for subsequent PCR amplification of both coral and zooxanthellar DNA. The D1 and D2 variable region of the large Subunit rRNA gene (LSUrDNA) was amplified from the DNA of P. furcata and S. siderea by PCR. Electrophoresis yielded two major DNA bands: an 800-base pair (bp) DNA, which represented the coral ribosomal RNA (rRNA) gene, and a 600-bp DNA, which represented the zooxanthellar srRNA gene. Extraction of DNA from the bands yielded between 290 mug total DNA (S. siderea coral DNA) and 9 mug total DNA (P. furcata zooxanthellar DNA). The ability to transport and store genetic material from scleractinian corals without resort to laboratory facilities in the field allows for the molecular Study of a far wider range and variety of coral sites than have been studied to date. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Symbiotic dinoflagellates of the genus Symbiodinium, also called zooxanthellae, are found in association with a wide diversity of shallow-water anthozoans. The Symbiodinium genus includes numerous lineages, also referred to as clades or phylotypes, as well as a wide diversity of genetic sub-clades and sub-phylotypes. There are few studies characterizing the genetic diversity of zooxanthellae in Mediterranean anthozoans. In this study, we included anthozoans from the Western Mediterranean Sea and by means of internal transcriber (ITS) and large sub-unit (LSU) rRNA markers we corroborate what has been previously identified, demonstrating that phylotype “Temperate A” is very common among host Cnidaria in this basin. Our finding of fixed differences in ITS and LSU markers that correspond to different host taxa, indicate that this clade may comprise several closely-related species.
Resumo:
Corais pétreos são formadores de recifes. Por secretarem carbonato de cálcio pela base de seus pólipos, esses corais zooxantelados formam um exoesqueleto, composto geralmente por cristais de aragonita. Os padrões de crescimento coralinos variam desde a escala sazonal a centenária e podem ser caracterizados pela medida da taxa de crescimento, a variabilidade dos isótopos estáveis de oxigênio e carbono e pelas razões elementares Sr/Ca, Mg/Ca, U/Ca, Cd/Ca, Ra/Ca (entre outras) em seu esqueleto. Em um contexto global, os recifes cumprem importante papel como sumidouros de carbono atmosférico. Diante das evidências de um oceano mais quente na era moderna, a temperatura da superfície do mar (TSM) tem sido considerada um importante fator de controle da calcificação e crescimento coralino. Geralmente, a calcificação tende a aumentar com a elevação da TSM dentro de uma estreita faixa aceitável para o funcionamento pleno do metabolismo coralino. Neste trabalho, desenvolveu-se uma re-análise das taxas de crescimento de testemunhos de corais amostrados na costa brasileira (Salvador-Ba - Baía de Todos os Santos, Parque Nacional Marinho dos Abrolhos-Ba e Armação dos Búzios-RJ) empregando-se uma combinação de bandas de crescimento (alta e baixa densidades) auxiliado pelo método de luminescência e datação por radioisótopos de U e Th. As diferenças nas cronologias para os dois métodos variou de 1 ano para o caso de Abrolhos até 7,4 anos para Búzios (em seções específicas do testemunho). Foram analisadas variações de calcificação no esqueleto coralino e interpretadas à luz das razões Sr/Ca e U/Ca (ambos próxies da TSM), séries climáticas de AMO e PDO, e pH pelágico oceânico. Identificamos uma diminuição na taxa de calcificação do exoesqueleto no tempo estudado na amostra de Salvador de 0,4 g/cm2, e um aumento em Abrolhos de 0,4 g/cm2 e Búzios 0,3 g/cm2, exceto nos anos de 1950 ao final de 1980 e de 1910 ao final de 1930, respectivamente. Uma microtomografia de raio-X foi empregada para determinar micro-estruturas coralinas, sendo os parâmetros mais relevantes a microporosidade e a anisotropia. Para Abrolhos e Búzios, foi identificado um aumento na porosidade total do exoesqueleto, principalmente no começo de 1940 até o fim da década de 1980 e entre 1890 a 1930 respectivamente. Notou-se forte associação entre a redução do padrão de calcificação com o aumento da porosidade. Os testemunhos da espécie Siderastrea stellata coletados em Abrolhos e Búzios mostraram alta associação das razoes Sr/Ca e U/Ca com a taxa de calcificação, caracterizando uma resposta similar a de outros autores para a Grande Barreira na Austrália (DE'ATH et al., 2009) e para a região central do Mar Vermelho (CANTIN et al., 2010). Em relação as razões Ba/Ca, Salvador e Abrolhos evidenciaram variáveis que contribuíram para este aumento como a forçante de produção de petróleo e aumento populacional (economia), e TSM (oceano). Para Búzios, a TSM (oceano), produção de petróleo, aumento populacional e NDVI (economia). Após os anos de 1990, o impacto dos fatores econômicos, além das variáveis oceânicas respondem mais significativamente o aumento da razão Ba/Ca em todos os sítios quase que concomitantemente na costa brasileira.
Resumo:
Porphyrin metabolic disruption from exposure to xenobiotic contaminants such as heavy metals, dioxins, and aromatic hydrocarbons can elicit overproduction of porphyrins. Measurement of porphyrin levels, when used in conjunction with other diagnostic assays, can help elucidate an organism’s physiological condition and provide evidence for exposure to certain toxicants. A sensitive microplate fluorometric assay has been optimized for detecting total porphyrin levels in detergent solubilized protein extracts from symbiotic, dinoflagellate containing cnidarian tissues. The denaturing buffer used in this modified assay contains a number of potentially interfering components (e.g., sodium dodecyl sulfate (SDS), dithiothreitol (DTT), protease inhibitors, and chlorophyll from the symbiotic zooxanthellae), which required examination and validation. Examination of buffer components were validated for use in this porphyrin assay; while the use of a specific spectrofluorometric filter (excitation 400 ± 15 nm; emission 600 ± 20 nm) minimized chlorophyll interference. The detection limit for this assay is 10 fmol of total porphyrin per μg of total soluble protein and linearity is maintained up to 5000 fmol. The ability to measure total porphyrins in a SDS protein extract now allows a single extract to be used in multiple assays. This is an advantage over classical methods, particularly when tissue samples are limiting, as is often the case with coral due to availability and collection permit restrictions.
Resumo:
Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.
Disturbance to conserved bacterial communities in the cold water gorgonian coral Eunicella verrucosa
Resumo:
The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.
Resumo:
The increasing interest in coral culture for biotechnological applications, to supply the marine aquarium trade, or for reef restoration programs, has prompted researchers to optimize coral culture protocols, with emphasis to ex situ production. When cultured ex situ, the growth performance of corals can be influenced by several physical, chemical and biological parameters. For corals harbouring zooxanthellae, light is one of such key factors, as it can influence the photosynthetic performance of these endosymbionts, as well as coral physiology, survival and growth. The economic feasibility of ex situ coral aquaculture is strongly dependent on production costs, namely those associated with the energetic needs directly resulting from the use of artificial lighting systems. In the present study we developed a versatile modular culture system for experimental coral production ex situ, assembled solely using materials and equipment readily available from suppliers all over the world; this approach allows researchers from different institutions to perform truly replicated experimental set-ups, with the possibility to directly compare experimental results. Afterwards, we aimed to evaluate the effect of contrasting Photosynthetically Active Radiation (PAR) levels, and light spectra emission on zooxanthellae photochemical performance, through the evaluation of the maximum quantum yield of PSII (Fv/Fm) (monitored non-invasively and non-destructively through Pulse Amplitude Modulation fluorometry, PAM), chlorophyll a content (also determined non-destructively by using the spectral reflectance index Normalized Difference Vegetation Index, NDVI), photosynthetic and accessory pigments, number of zooxanthellae, coral survival and growth. We studied two soft coral species, Sarcophyton cf. glaucum and Sinularia flexibilis, as they are good representatives of two of the most specious genera in family Alcyoniidae, which include several species with interest for biotechnological applications, as well as for the marine aquarium trade; we also studied two commercially important scleractinian corals: Acropora formosa and Stylophora pistillata. We used different light sources: hydrargyrum quartz iodide (HQI) lamps with different light color temperatures, T5 fluorescent lamps, Light Emitting Plasma (LEP) and Light Emitting Diode (LED). The results achieved revealed that keeping S. flexibilis fragments under the same light conditions as their mother colonies seems to be photobiologically acceptable for a short-term husbandry, notwithstanding the fact that they can be successfully stocked at lower PAR intensities. We also proved that low PAR intensities are suitable to support the ex situ culture S. cf. glaucum in captivity at lower production costs, since the survival recorded during the experiment was 100%, the physiological wellness of coral fragments was evidenced, and we did not detect significant differences in coral growth. Finally, we concluded that blue light sources, such as LED lighting, allow a higher growth for A. formosa and S. pistillata, and promote significant differences on microstructure organization and macrostructure morphometry in coral skeletons; these findings may have potential applications as bone graft substitutes for veterinary and/or other medical uses. Thus, LED technology seems to be a promising option for scleractinian corals aquaculture ex situ.
Resumo:
Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 mu m day-1, increasing after addition of symbionts to 18.0 mu m day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.
Resumo:
Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 μm day-1, increasing after addition of symbionts to 18.0 μm day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.
Resumo:
The Mediterranean Sea is expected to react faster to global change compared to the ocean and is already showing more pronounced warming and acidification rates. A study performed along the Italian western coast showed that porosity of the skeleton increases with temperature in the zooxanthellate (i.e. symbiotic with unicellular algae named zooxanthellae) solitary scleractinian Balanophyllia europaea while it does not vary with temperature in the solitary non-zooxanthellate Leptopsammia pruvoti. These results were confirmed by another study that indicated that the increase in porosity was accompanied by an increase of the fraction of the largest pores in the pore-space, perhaps due to an inhibition of the photosynthetic process at elevated temperatures, causing an attenuation of calcification. B. europaea, L. pruvoti and the colonial non-zooxanthellate Astroides calycularis, transplanted along a natural pH gradient, showed that high temperature exacerbated the negative effect of lowered pH on their mortality rates. The growth of the zooxanthellate species did not react to reduced pH, while the growth of the two non-zooxanthellate species was negatively affected. Reduced abundance of naturally occurring B. europaea, a mollusk, a calcifying and a non-calcifying macroalgae were observed along the gradient while no variation was seen in the abundance of a calcifying green alga. With decreasing pH, the mineralogy of the coral and mollusk did not change, while the two calcifying algae decreased the content of aragonite in favor of the less soluble calcium sulphates and whewellite (calcium oxalate), possibly as a mechanism of phenotypic plasticity. Increased values of porosity and macroporosity with CO2 were observed in B. europaea specimens, indicating reduces the resistance of its skeletons to mechanical stresses with increasing acidity. These findings, added to the negative effect of temperature on various biological parameters, generate concern on the sensitivity of this zooxanthellate species to the envisaged global climate change scenarios.