6 resultados para zitterbewegung
Resumo:
There exists a remarkably close relationship between the operator algebra of the Dirac equation and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying on a mass-spin Regge trajectory). The analog of the Foldy-Wouthuysen transformation (more generally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and explicit results are discussed for the spin and position operators. Zitterbewegung is shown to exist for a system having only positive energies.
Resumo:
We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly coupled to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.
Resumo:
The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.
Resumo:
The propagation of a free scalar field phi with mass m in a curved background is generally described by the equation (g(munu) delmudelnu + m(2) + xiR)phi = 0. There exist some arguments in the literature that seem to favor the conformal coupling to the detriment of the minimal one. However, the majority of these claims axe inconclusive. Here we show that the exact Foldy Wouthuysen transformation for spin-0 particle coupled to a wide class of static spacetime metrics exists independently of the value of. Nevertheless, if the coupling is of the conformal type, the gravitational Darwin-like term has an uncomplicated structure and it is proportional to the corresponding term in the fermionic case. In addition, an independent computation of this term, which has its origin in the zitterbewegung fluctuation of the boson's position with the mean square <(deltar)(2)> approximate to 1/m(2), gives a result that coincides with that obtained using the aforementioned exact transformation with xi = 1/6.
Resumo:
By studying classical realizations of the sl(2, R-fraktur sign) algebra in a two dimensional phase space (q,π), we have derived a continuous family of new actions for free fractional spin particles in 2 + 1 dimensions. For the case of light-like spin vector (SμSμ = 0), the action is remarkably simple. We show the appearence of the Zitterbewegung in the solutions of the equations of motion, and relate the actions to others in the literature at classical level. © 1997 Elsevier Science B.V.