996 resultados para zero crossing technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal processing methods based on the combined use of the continuous wavelet transform (CWT) and zero-crossing technique were applied to the simultaneous spectrophotometric determination of perindopril (PER) and indapamide (IND) in tablets. These signal processing methods do not require any priory separation step. Initially, various wavelet families were tested to identify the optimum signal processing giving the best recovery results. From this procedure, the Haar and Biorthogonal1.5 continuous wavelet transform (HAAR-CWT and BIOR1.5-CWT, respectively) were found suitable for the analysis of the related compounds. After transformation of the absorbance vectors by using HAAR-CWT and BIOR1.5-CWT, the CWT-coefficients were drawn as a graph versus wavelength and then the HAAR-CWT and BIOR1.5-CWT spectra were obtained. Calibration graphs for PER and IND were obtained by measuring the CWT amplitudes at 231.1 and 291.0 nm in the HAAR-CWT spectra and at 228.5 and 246.8 nm in BIOR1.5-CWT spectra, respectively. In order to compare the performance of HAAR-CWT and BIOR1.5-CWT approaches, derivative spectrophotometric (DS) method and HPLC as comparison methods, were applied to the PER-IND samples. In this DS method, first derivative absorbance values at 221.6 for PER and 282.7 nm for IND were used to obtain the calibration graphs. The validation of the CWT and DS signal processing methods was carried out by using the recovery study and standard addition technique. In the following step, these methods were successfully applied to the commercial tablets containing PER and IND compounds and good accuracy and precision were reported for the experimental results obtained by all proposed signal processing methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A very simple spectrophotometric method is described for resolving binary mixture of the food colorants Sunset Yellow (INS 110) and Tartrazine Yellow (INS 102) by using the first derivative spectra with measurements at zero-crossing wavelengths. Before the spectrophotometric measurements, the dyes were sorbed onto polyurethane foam and recovered in N,N-dimethilformamide. Commercial food products (gelatine and juice powder) were analysed by using the proposed method and the HPLC technique. The results are in very good agreement and the differences between the methods is not statistically important. Therefore, the first-order derivative spectrophotometric method is accurate, precise, reliable and could be applied to the routine analysis of food samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The seismic processing technique has the main objective to provide adequate picture of geological structures from subsurface of sedimentary basins. Among the key steps of this process is the enhancement of seismic reflections by filtering unwanted signals, called seismic noise, the improvement of signals of interest and the application of imaging procedures. The seismic noise may appear random or coherent. This dissertation will present a technique to attenuate coherent noise, such as ground roll and multiple reflections, based on Empirical Mode Decomposition method. This method will be applied to decompose the seismic trace into Intrinsic Mode Functions. These functions have the properties of being symmetric, with local mean equals zero and the same number of zero-crossing and extremes. The developed technique was tested on synthetic and real data, and the results were considered encouraging

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El presente proyecto tiene el objetivo de facilitar la composición de canciones mediante la creación de las distintas pistas MIDI que la forman. Se implementan dos controladores. El primero, con objeto de transcribir la parte melódica, convierte la voz cantada o tarareada a eventos MIDI. Para ello, y tras el estudio de las distintas técnicas del cálculo del tono (pitch), se implementará una técnica con ciertas variaciones basada en la autocorrelación. También se profundiza en el segmentado de eventos, en particular, una técnica basada en el análisis de la derivada de la envolvente. El segundo, dedicado a la base rítmica de la canción, permite la creación de la percusión mediante el golpe rítmico de objetos que disponga el usuario, que serán asignados a los distintos elementos de percusión elegidos. Los resultados de la grabación de estos impactos serán señales de corta duración, no lineales y no armónicas, dificultando su discriminación. La herramienta elegida para la clasificación de los distintos patrones serán las redes neuronales artificiales (RNA). Se realizara un estudio de la metodología de diseño de redes neuronales especifico para este tipo de señales, evaluando la importancia de las variables de diseño como son el número de capas ocultas y neuronas en cada una de ellas, algoritmo de entrenamiento y funciones de activación. El estudio concluirá con la implementación de dos redes de diferente naturaleza. Una red de Elman, cuyas propiedades de memoria permiten la clasificación de patrones temporales, procesará las cualidades temporales analizando el ataque de su forma de onda. Una red de propagación hacia adelante feed-forward, que necesitará de robustas características espectrales y temporales para su clasificación. Se proponen 26 descriptores como los derivados de los momentos del espectro: centroide, curtosis y simetría, los coeficientes cepstrales de la escala de Mel (MFCCs), y algunos temporales como son la tasa de cruces por cero y el centroide de la envolvente temporal. Las capacidades de discriminación inter e intra clase de estas características serán evaluadas mediante un algoritmo de selección, habiéndose elegido RELIEF, un método basado en el algoritmo de los k vecinos mas próximos (KNN). Ambos controladores tendrán función de trabajar en tiempo real y offline, permitiendo tanto la composición de canciones, como su utilización como un instrumento más junto con mas músicos. ABSTRACT. The aim of this project is to make song composition easier by creating each MIDI track that builds it. Two controllers are implemented. In order to transcribe the melody, the first controler converts singing voice or humming into MIDI files. To do this a technique based on autocorrelation is implemented after having studied different pitch detection methods. Event segmentation has also been dealt with, to be more precise a technique based on the analysis of the signal's envelope and it's derivative have been used. The second one, can be used to make the song's rhythm . It allows the user, to create percussive patterns by hitting different objects of his environment. These recordings results in short duration, non-linear and non-harmonic signals. Which makes the classification process more complicated in the traditional way. The tools to used are the artificial neural networks (ANN). We will study the neural network design to deal with this kind of signals. The goal is to get a design methodology, paying attention to the variables involved, as the number of hidden layers and neurons in each, transfer functions and training algorithm. The study will end implementing two neural networks with different nature. Elman network, which has memory properties, is capable to recognize sequences of data and analyse the impact's waveform, precisely, the attack portion. A feed-forward network, needs strong spectral and temporal features extracted from the hit. Some descriptors are proposed as the derivates from the spectrum moment as centroid, kurtosis and skewness, the Mel-frequency cepstral coefficients, and some temporal features as the zero crossing rate (zcr) and the temporal envelope's centroid. Intra and inter class discrimination abilities of those descriptors will be weighted using the selection algorithm RELIEF, a Knn (K-nearest neighbor) based algorithm. Both MIDI controllers can be used to compose, or play with other musicians as it works on real-time and offline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Urban regions present some of the most challenging areas for the remote sensing community. Many different types of land cover have similar spectral responses, making them difficult to distinguish from one another. Traditional per-pixel classification techniques suffer particularly badly because they only use these spectral properties to determine a class, and no other properties of the image, such as context. This project presents the results of the classification of a deeply urban area of Dudley, West Midlands, using 4 methods: Supervised Maximum Likelihood, SMAP, ECHO and Unsupervised Maximum Likelihood. An accuracy assessment method is then developed to allow a fair representation of each procedure and a direct comparison between them. Subsequently, a classification procedure is developed that makes use of the context in the image, though a per-polygon classification. The imagery is broken up into a series of polygons extracted from the Marr-Hildreth zero-crossing edge detector. These polygons are then refined using a region-growing algorithm, and then classified according to the mean class of the fine polygons. The imagery produced by this technique is shown to be of better quality and of a higher accuracy than that of other conventional methods. Further refinements are suggested and examined to improve the aesthetic appearance of the imagery. Finally a comparison with the results produced from a previous study of the James Bridge catchment, in Darleston, West Midlands, is made, showing that the Polygon classified ATM imagery performs significantly better than the Maximum Likelihood classified videography used in the initial study, despite the presence of geometric correction errors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The seismic processing technique has the main objective to provide adequate picture of geological structures from subsurface of sedimentary basins. Among the key steps of this process is the enhancement of seismic reflections by filtering unwanted signals, called seismic noise, the improvement of signals of interest and the application of imaging procedures. The seismic noise may appear random or coherent. This dissertation will present a technique to attenuate coherent noise, such as ground roll and multiple reflections, based on Empirical Mode Decomposition method. This method will be applied to decompose the seismic trace into Intrinsic Mode Functions. These functions have the properties of being symmetric, with local mean equals zero and the same number of zero-crossing and extremes. The developed technique was tested on synthetic and real data, and the results were considered encouraging

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Voice processing in real-time is challenging. A drawback of previous work for Hypokinetic Dysarthria (HKD) recognition is the requirement of controlled settings in a laboratory environment. A personal digital assistant (PDA) has been developed for home assessment of PD patients. The PDA offers sound processing capabilities, which allow for developing a module for recognition and quantification HKD. Objective: To compose an algorithm for assessment of PD speech severity in the home environment based on a review synthesis. Methods: A two-tier review methodology is utilized. The first tier focuses on real-time problems in speech detection. In the second tier, acoustics features that are robust to medication changes in Levodopa-responsive patients are investigated for HKD recognition. Keywords such as Hypokinetic Dysarthria , and Speech recognition in real time were used in the search engines. IEEE explorer produced the most useful search hits as compared to Google Scholar, ELIN, EBRARY, PubMed and LIBRIS. Results: Vowel and consonant formants are the most relevant acoustic parameters to reflect PD medication changes. Since relevant speech segments (consonants and vowels) contains minority of speech energy, intelligibility can be improved by amplifying the voice signal using amplitude compression. Pause detection and peak to average power rate calculations for voice segmentation produce rich voice features in real time. Enhancements in voice segmentation can be done by inducing Zero-Crossing rate (ZCR). Consonants have high ZCR whereas vowels have low ZCR. Wavelet transform is found promising for voice analysis since it quantizes non-stationary voice signals over time-series using scale and translation parameters. In this way voice intelligibility in the waveforms can be analyzed in each time frame. Conclusions: This review evaluated HKD recognition algorithms to develop a tool for PD speech home-assessment using modern mobile technology. An algorithm that tackles realtime constraints in HKD recognition based on the review synthesis is proposed. We suggest that speech features may be further processed using wavelet transforms and used with a neural network for detection and quantification of speech anomalies related to PD. Based on this model, patients' speech can be automatically categorized according to UPDRS speech ratings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O assentamento de células de leveduras no fundo das dornas e perdas de células nas centrífugas podem ser causadas por bactérias floculantes, contaminantes naturais da fermentação alcoólica industrial. Estes problemas levam a queda no rendimento e produtividade do etanol. O presente trabalho visa a caracterização da floculação de Saccharomyces cerevisiae por Lactobacillus fermentum CCT 1396. As células de leveduras e bactérias foram misturadas e a floculação das células quantificadas por espectrofotometria. Concentrações de bactérias numa faixa de 0,4 a 3,8g/L (biomassa seca) foram testadas a fim de determinar a ótima concentração de bactérias necessária para provocar a floculação das leveduras. O efeito de pH na floculação das células de leveduras e bactérias foi determinado. 1,38g/L de bactéria foi necessário para a floculação, de 65,4g/L de células de levedura com tempo de contato entre as células (sob agitação) de 15 minutos e repouso de 20 minutos. No pH 3,0 pouco efeito na floculação celular foi detectado e as células continuaram floculadas, mas na faixa de pH 2,0 -- 2,5 a floculação foi próxima de zero. Esta técnica pode ser utilizada para o controle da floculação de leveduras de indústrias de produção de álcool, para determinar a origem desta floculação, já que trata-se de uma técnica fácil, econômica e rápida.