1000 resultados para young plants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of leaf total nitrogen concentration as an indicator for nutritional diagnosis has some limitations. The objective of this study was to determine the reliability of total N concentration as an indicator of N status for eucalyptus clones, and to compare it with alternative indicators. A greenhouse experiment was carried out in a randomized complete block design in a 2 × 6 factorial arrangement with plantlets of two eucalyptus clones (140 days old) and six levels of N in the nutrient solution. In addition, a field experiment was carried out in a completely randomized design in a 2 × 2 × 2 × 3 factorial arrangement, consisting of two seasons, two regions, two young clones (approximately two years old), and three positions of crown leaf sampling. The field areas (regions) had contrasting soil physical and chemical properties, and their soil contents for total N, NH+4-N, and NO−3-N were determined in five soil layers, up to a depth of 1.0 m. We evaluated the following indicators of plant N status in roots and leaves: contents of total N, NH+4-N, NO−3-N, and chlorophyll; N/P ratio; and chlorophyll meter readings on the leaves. Ammonium (root) and NO−3-N (root and leaf) efficiently predicted N requirements for eucalyptus plantlets in the greenhouse. Similarly, leaf N/P, chlorophyll values, and chlorophyll meter readings provided good results in the greenhouse. However, leaf N/P did not reflect the soil N status, and the use of the chlorophyll meter could not be generalized for different genotypes. Leaf total N concentration is not an ideal indicator, but it and the chlorophyll levels best represent the soil N status for young eucalyptus clones under field conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT The Paratudo (Tabebuia aurea) is a species occurring in the Pantanal of Miranda, Mato Grosso do Sul, Brazil, an area characterized by seasonal flooding. To evaluate the tolerance of this plant to flooding, plants aged four months were grown in flooded soil and in non-flooded soil (control group). Stomatal conductance, transpiration and CO2 assimilation were measured during the stress (48 days) and recovery (11 days) period, totalling 59 days. The values of stomatal conductance of the control group and stressed plants at the beginning of the flooded were 0.33 mol m-2s-1 and reached 0.02 mol m-2 s-1 (46th day) at the end of this event. For the transpiration parameter, the initial rate was 3.1 mol m s-1, and the final rate reached 0.2 or 0.3 mol m-2 s-1 (47/48 th day). The initial photosynthesis rate was 8.9 mmol m-2s-1 and oscillated after the sixth day, and the rate reached zero on the 48th day. When the photosynthesis rate reached zero, the potted plants were dried, and the rate was analyzed (11th day). The following values were obtained for dried plants: stomatal conductance = 0.26 mol m-2 s-1, transpiration rate = 2.5 mol m-2 s-1 and photosynthesis rate = 7.8 mmol m-2 s-1. Flooded soil reduced photosynthesis and stomatal conductance, leading to the hypertrophy of the lenticels. These parameters recovered and after this period, and plants exhibited tolerance to flooding stress by reducing their physiological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six brachytic maize varieties were crossed in a diallel mating scheme. Both varieties and crosses were grown hydroponically in a greenhouse, in randomized complete blocks with three replications in two seasons. Four brachytic double cross hybrids were used as checks. Twenty-eight days after planting, data for eight traits were taken for weights of the total plant (TPW), top plant (TOW), total roots (TRW), seminal roots (SRW), and nodal roots (NRW) and number of total roots (TRN), seminal roots (SRN), and nodal roots (NRN). Ten plants were measured in each plot and all the analyses were accomplished with plot means. In the diallel cross the top plant contributed 57.6% of the total plant weight, for seminal roots 15.4%, and for nodal roots 27.0%. Root number distribution was 36.7% seminal roots and 63.3% nodal roots. Approximately the same ratios were observed in the checks. The average heterosis effects were nonsignificant for all traits; the other components of heterosis (variety and specific heterosis) also were not important sources of variation in young plants. The overall results suggest that nonadditive gene action is not an important source of variation for the plant and root system of young plants. The positive correlation coefficients for combinations of traits indicated that they are under the control of a polygenic system

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trinexapac-ethyl and sulfometuron-methyl are the most widely used ripeners in sugarcane. The application is performed by airborne spraying. Thus, if weather conditions are unfavorable, spray drift to neighboring areas may occur. The objective of this study was to assess the selectivity of the plant growth regulators trinexapac-ethyl and sulfometuron-methyl, used as sugarcane ripeners, to eucalyptus (Eucalyptus urograndis) young plants. The experiment was installed in an eucalyptus commercial yield area, in the municipality of Tambaú, state of São Paulo, Brazil, and arranged in a 2 x 8 factorial design in randomized blocks with four replications. The treatments studied were trinexapac-ethyl and sulfometuron-methyl, sprayed in eight doses, 0; 1.0; 2.5; 5.0; 10; 25; 50 and 100% of the dose used in sugarcane as ripeners (200 g ha-1 of trinexapac-ethyl and 15 g ha-1 of sulfometuron-methyl). Chemical ripeners were applied on eucalyptus plants with 48 cm in height on average; 10.1 branches; 4.5 mm of stem diameter and 44.3 cm of crown diameter, at 46 days after seeding. Trinexapac-ethyl was selective to eucalyptus and stimulated crown diameter growth. At higher doses, sulfometuron-methyl promoted severe noticeable injuries in eucalyptus plants, such as apical bud death. However, during the assessment period the plants recovered and the visual symptoms of phytotoxicity and growth alterations were not observed at 60 days after application. The plant growth regulators trinexapac-ethyl and sulfometuron-methyl were selective to eucalyptus young plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aluminum (Al3+) toxicity is a major limiting factor to crop productivity in acid soils. The effects of aluminum on root and shoot growth of physic nut (Jatropha curcas L.) young plants and, the uptake and distribution of phosphorus, calcium, magnesium and aluminum in the roots and shoots were investigated in the present study. Plants were grown in 2.5L pots in a greenhouse. After fourteen days of adaptation to nutrient solution, plants were exposed to Al concentrations of 0, 370, 740, 1,100 and 1,480 mu mol L-1, corresponding to an active Al3+ solution of 13.3, 35.3, 90.0, 153.3 and 220.7 mu mol L-1, respectively. The dry matter partitioning between roots, stems and leaves, and the concentrations of P, Ca, Mg and Al in plant tissue, were measured after 75 days exposure to Al. The increasing level of Al3+ activity in solution progressively decreased the growth of the shoot and root of physic nut plants, and at the two highest active Al3+ levels, plants showed morphological abnormalities typical of the toxicity caused by this metal. Higher Al3+ activity reduced P concentrations in leaves and Ca and Mg in leaves and roots of physic nut, demonstrating the effect of Al on the uptake, transport and use of these nutrients by plants. The Al accumulated preferentially in the roots of physic nut, whereas only a small amount was transported to shoots.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plants have different levels of tolerance to phytotoxic effects of aluminum and the exploitation of this characteristic is of significant importance to the use of acid soils. This research aimed to evaluate the effect of aluminum activity in nutrient solution on growth of physic nut young plant. After seven days of adaptation, plants were submitted to Al concentrations of 0; 200; 400; 600; 800 and 1,000 μmol L-1, corresponding to Al3+ activity solution, of: 14.5, 21.4; 46.6; 75.6; 108.3 e 144.8 μmol L-1, respectively. The increased activity of Al3+ decreased linearly the number of leaves, plant height, leaf area, shoot dry matter and root length of physic nut plant. Physic nut young plants are sensitive to high aluminum activity in solution. The root length, number of leaves, shoot dry matter and total dry matter were variables more affected by Al activity in solution, and can be used to discriminate the tolerance levels to aluminum in physic nut plants. The accumulation of aluminum increased in a activity-dependent manner; however, its translocation from root to shoot was low.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be achieved by reducing the temperature of a surface below the air dew point temperature, inducing water vapor condensation on the surface. The temperature of a surface can be reduced by applying the thermoelectric effect, with Peltier modules powered by electricity. Here, we present a system that generates electricity with a solar photovoltaic module, stores it in a battery, and finally, it uses the electricity at the moment in which air humidity and temperature are optima to maximize water condensation while minimizing energy consumption. Also, a method to reduce the evaporation of the condensed water is proposed. The objective of the system, rather than irrigating young plants in such a degree as to boost their growth, is to maintain them alive in the dryer periods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of reliable clonal propagation technologies is a requisite for performing Multi-Varietal Forestry (MVF). Somatic embryogenesis is considered the tissue culture based method more suitable for operational breeding of forest trees. Vegetative propagation is very difficult when tissues are taken from mature donors, making clonal propagation of selected trees almost impossible. We have been able to induce somatic embryogenesis in leaves taken from mature oak trees, including cork oak (Quercus suber). This important species of the Mediterranean ecosystem produces cork regularly, conferring to this species a significant economic value. In a previous paper we reported the establishment of a field trial to compare the growth of plants of somatic origin vs zygotic origin, and somatic plants from mature trees vs somatic plants from juvenile seedlings. For that purpose somatic seedlings were regenerated from five selected cork oak trees and from young plants of their half-sib progenies by somatic embryogenesis. They were planted in the field together with acorn-derived plants of the same families. After the first growth period, seedlings of zygotic origin doubled the height of somatic seedlings, showing somatic plants of adult and juvenile origin similar growth. Here we provide data on height and diameter increases after two additional growth periods. In the second one, growth parameters of zygotic seedlings were also significantly higher than those of somatic ones, but there were not significant differences in height increase between seedlings and somatic plants of mature origin. In the third growth period, height and diameter increases of somatic seedlings cloned from the selected trees did not differ from those of zygotic seedlings, which were still higher than data from plants obtained from somatic embryos from the sexual progeny. Therefore, somatic seedlings from mature origin seem not to be influenced by a possible ageing effect, and plants from somatic embryos tend to minimize the initial advantage of plants from acorns

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be achieved by reducing the temperature of a surface below the air dew point temperature, inducing water vapor condensation on the surface. The temperature of a surface can be reduced by applying the thermoelectric effect, with Peltier modules powered by electricity. Here, we present a system that generates electricity with a solar photovoltaic module, stores it in a battery, and finally, uses the electricity at the moment in which air humidity and temperature are optimal to maximize water condensation while minimizing energy consumption. Also, a method to reduce the evaporation of the condensed water is proposed. The objective of the system is to sustain young plants in drier periods, rather than exclusively irrigating young plants to boost their growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing water scarcity and depleted water productivity in irrigated soils are inducing farmers to adopt improved varieties, such as those with high-capacity tolerance. The use of tolerant varieties of sugarcane might substantially avoid the decline of productivity under water deficit. This research aimed to evaluate the harmful effects of drought on the physiology of two sugarcane varieties (RB867515 and RB962962) during the initial development. Young plants were subjected to irrigation suspension until total stomata closure, and then rewatered. Significant reduction on stomatal conductance, transpiration, and net photosynthesis were observed. RB867515 showed a faster stomatal closure while RB962962 slowed the effects of drought on the gas exchanges parameters with a faster recovering after rewatering. Accumulation of carbohydrates, amino acids, proline, and protein in the leaves and roots of the stressed plants occurred in both varieties, substantially linked to reduction of the leaf water potential. Due to the severity of stress, this accumulation was not enough to maintain the cell turgor pressure, so relative water content was diminished. Water stress affected the contents of chlorophyll (a, b, and total) in both varieties, but not the levels of carotenoids. There was a significant reduction in dry matter under stress. In conclusion, RB962962 variety endured stressed conditions more than RB867515, since it slowed down the damaging effects of drought on the gas exchanges. In addition, RB962962 presented a faster recovery than RB867515, a feature that qualifies it as a variety capable of enduring short periods of drought without major losses in the initial stage of its development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study had the following objectives: to induce and describe symptoms of deficiency of boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo) and zinc (Zn), determining the effect on the mineral composition of leaves. The experiment was developed in a green house and used diagnosis technique by subtraction. The experimental design usedn was a randomized blocks, with seven treatments and three replicates. It was verified that micronutrient omission led to morphological alterations which, in turn, caused visual symptoms. The symptoms caused by the omission of Cu, Mn and Zn were the first to appear, and were followed by those of B, Fe and Mo. The omission of B, Mn and Zn was responsible for the more pronounced reduction in height and stem diameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O estabelecimento e o crescimento inicial de espécies florestais no campo são fortemente afetados pela disponibilidade de água no solo e pela época de plantio, por isso, o presente trabalho estuda o impacto do déficit hídrico no crescimento de mudas de dois clones do híbrido Eucalyptus grandis x Eucalyptus urophylla, ambos submetidos a 4 níveis de déficit hídrico, em duas épocas de plantio. O estudo foi realizado na área experimental do Núcleo de Estudos e Difusão de Tecnologia em Florestas, Recursos Hídricos e Agricultura Sustentável (NEDTEC), do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES), localizado no município de Jerônimo Monteiro. O trabalho foi realizado em duas épocas distintas, sendo a primeira no período de 09 de fevereiro a 09 de junho de 2009 e a segunda no período de 11 de julho a 07 de novembro de 2009, visando à realização das observações em diferentes condições de regime de radiação, déficit de pressão do vapor do ar, temperatura, umidade relativa do ar e velocidade do vento. O delineamento experimental utilizado foi o inteiramente ao acaso em parcelas subdivididas 2 x 4, alocando-se os 4 níveis de déficits hídricos na parcela principal e as 2 épocas nas subparcelas, com três repetições. Os manejos hídricos aplicados foram: Déficit 0 (D0) sem déficit, Déficit 1(D1) corte da irrigação aos 30 dias de experimentação, permanecendo até o final do experimento, Déficit 2 (D2) corte da irrigação aos 30 dias de experimentação, suspensão da irrigação por 60 dias e posterior retomada da irrigação por mais 30 dias; Déficit 3 (D3) corte da irrigação aos 60 dias de experimentação, prolongando até o final do experimento. Os dados experimentais foram submetidos à análise de variância, e quando significativas, as médias foram comparadas pelo teste de média Tukey a 5% de probabilidade, para cada clone estudado. Com este trabalho, foi possível avaliar o impacto de diferentes déficits hídricos, no crescimento inicial das plantas, em duas épocas do ano e avaliar o incremento no desenvolvimento das plantas durante a aplicação dos tratamentos, com retiradas de amostras médias de cada tratamento a cada 30 dias. As variáveis medidas nos dois experimentos foram altura total da planta, diâmetro ao nível do coleto, número de folhas, área foliar, matéria seca de folhas, matéria seca de haste e ramos, matéria seca de raízes e matéria seca total. Foram avaliadas as variáveis climáticas durante todo o período experimental, nas duas épocas, a fim de determinar a condição do clima em cada época. Para os dois clones estudados, em geral, os déficits hídricos promoveram a redução das variáveis morfológicas estudadas e a época experimental foi o fator que mais influenciou a redução do crescimento das plantas. Sendo que a Época 1 foi a que proporcionou resultados superiores, e a Época 2 foi a que prejudicou mais o desenvolvimento das plantas, reduzindo significativamente todas as variáveis morfológicas em todos os déficits hídricos, inclusive o D0.