5 resultados para ydinreaktori
Resumo:
Kandidaatintyössä tutustuttiin ydinsukellusveneiden reaktoreiden toimintaperiaatteisiin, ydinsukellusvenekäyttöön sopiviin reaktorityyppeihin ja sukellusvenereaktorin rakenteeseen ja erityispiirteisiin. Ydinsukellusveneiden historiassa perehdyttiin miksi ydinreaktori haluttiin valjastaa ydinsukellusveneen energialähteeksi ja mitä etuja se toi sukellusveneelle. Työn lopussa tutustuttiin ja mietittiin tulevaisuuden mahdollisia rauhanomaisia käyttökohteita ydinsukellusveneille ja sukellusvenereaktoreille. Lyhyesti perehdyttiin myös ydinsukellusveneiden käytöstä poistamiseen ja ydinsukellusveneille sattuneisiin onnettomuuksiin. Onnettomuuksissa perehdyttiin millaisia onnettomuuksia ydinsukellusveneille on tapahtunut ja tutustuttiin muutamaan reaktorionnettomuuteen esimerkkien kautta.
Resumo:
Tässä kandidaatintyössä tarkastellaan laivojen voimanlähteenä käytettäviä ydinreaktoreita ja vertaillaan niiden ominaisuuksia maalla toimiviin reaktoreihin. Lisäksi käydään läpi laivareaktorien historiaa, reaktorin purkaminen ja muut mahdolliset käyttösovellukset. Työssä käytettiin pääasiassa siviilikäytössä olleiden reaktorien tietoja, koska sotilaskäytössä olleiden reaktorien tietoja ei ollut käytettävissä julkisesti saatavilla olevasta aineistosta.
Resumo:
Sulasuolareaktori on ydinreaktorityyppi, jota kehitettiin ensimmäisen kerran Yhdysvalloissa 1940-luvulta 1970-luvulle. Tänä aikana sulasuolatekniikkaa tutkittiin muun muassa kahden koereaktorin avulla. Vuosikymmenten hiljaiselon jälkeen kiinnostus konseptia kohtaan heräsi uudelleen 2000-luvun alussa, kun Generation IV International Forum asetti sulasuolareaktorin yhdeksi mahdolliseksi neljännen sukupolven ydinreaktorityypiksi. Sulasuolareaktori poikkeaa merkittävästi nykyisin käytössä olevista tehoreaktoreista, joiden käyttämä polttoaine on sijoitettu kiinteinä nippuina reaktorin sydämeen. Sulasuolareaktorissa polttoaine on liuotettu sulaan suolaseokseen, joka kiertää koko primääripiirissä. Suolaseos toimii siis sekä fissiilinä polttoaineena että lämmönsiirron väliaineena. Reaktorin sydämessä on hidastimena grafiittia, ja polttoainesuola saavuttaa kriittisyyden vain grafiittimoderaattorin läpi kulkiessaan. Sulasuolareaktoreihin sisältyy monia mielenkiintoisia ominaisuuksia, kuten polttoaineen käynninaikainen jälleenkäsittely sekä kevytvesireaktorien käytetyn polttoaineen kierrättäminen. Konseptin kehittäminen vaatii kuitenkin huomattavan määrän teoreettista ja kokeellista tutkimustyötä, joten sulasuolareaktoreita ei näillä näkymin odoteta olevan kaupallisessa tuotannossa vielä lähitulevaisuudessa.
Resumo:
Nopeat ydinreaktorit ovat toiminnaltaan polttoainetehokkaampia kuin nykyään laajalti käytössä olevat termiset reaktorit. Tehokkuus perustuu siihen, että nopeassa reaktorissa ei tapahdu neutronien hidastumista, jolloin ne pystyvät esimerkiksi muuntamaan luonnonuraania ja muita fertiilejä aineita fissiileiksi aineiksi. Koska reaktorissa ei saa olla hidastinta, nopea reaktori ei voi käyttää jäähdytteenään vettä, vaan on käytettävä jotain raskaampia ytimiä sisältävää jäähdytettä, kuten natriumia. Natriumin käyttö tuo mukanaan tiettyjä ongelmia, sillä se on erittäin reaktioherkkä ilman ja veden kanssa. Nopeita reaktoreita on tosin käytetty ja tutkittu jo yli 50 vuotta, ja käyttökokemusten perusteella on löydetty toimivia ratkaisuja natriumin ongelmiin. Nopean reaktorin tehokas käyttö vaatii suljetun polttoainekierron, jossa käytetystä polttoaineesta voidaan valmistaa uutta polttoainetta joko nopealle tai termiselle reaktorille. Suljetun polttoainekierron infrastruktuuri on tosin hyvin kallista, joten sen käyttöönotto on kannattavaa lähinnä infrastruktuurin jo omaavissa maissa, kuten esimerkiksi Venäjällä. Nopeaa ja kevytvesireaktoria vertaillessa tulee esille tiettyjä yhtäläisyyksiä, erityisesti säteilyturvallisuuteen ja ydinturvallisuuteen liittyvissä asioissa. Suurimmat eroavaisuudet reaktorityyppien välillä nähdään polttoainetaloudessa ja jätehuollossa.
Resumo:
Tämän opinnäytetyön tavoitteena oli selvittää millaisia pieniä modulaarisia ydinvoimaloita (SMR engl. small modular reactor) on suunnitteilla ja miten pienet modulaariset kevytvesireaktorit eroavat toisen ja kolmannen sukupolven kevytvesilaitoksista. Työ tehtiin perehtymällä kirjallisuuslähteisiin ja erityisesti IAEA:n julkaisuihin ja raportteihin. SMR-laitosten suurin eroavaisuus verrattuna perinteisiin kevytvesilaitoksiin on lisääntynyt passiivinen turvallisuus. Ne voidaan suunnitella siten, ettei sähköä tai operaattoria tarvita reaktorin turvallisuuden varmistamiseksi. Lisäksi useissa SMR-reaktoreissa primääripiiri on integroitu painesäiliön sisään, mikä aiheuttaa uudenlaisia vaatimuksia reaktorisydämelle ja höyrystimille. Pienten modulaaristen voimaloiden etuina on niiden soveltuvuus pieniin sähköverkkoihin ja vaikeasti tavoitettavien alueiden energiantuotantoon. Sähköntuotannon lisäksi niitä voidaan käyttää myös lämmöntuotantoon, mikä parantaa laitosten kokonaishyötysuhdetta merkittävästi. Lisäksi SMR-laitosten erilainen kustannusrakenne tekee niistä houkuttelevan vaihtoehdon suurille ydinvoimalaitoksille, sillä pienemmät investointikustannukset alentavat sijoittajien riskejä. Lyhyemmän rakennusajan johdosta SMR-voimalat alkavat myös tuottaa voittoa suuria laitoksia nopeammalla aikataululla.