1000 resultados para xyloglucan activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of crude xyloglucan (XG) preparations from jatobá (Hymenaea courbaril var. stilbocarpa (Hayne) Y. T. Lee & Langenh.) seeds on Arabidopsis thaliana (L.) Heynh. root system development was investigated. The XG extracts exerted a dual effect on root system development by slowing down root growth and improving lateral root formation. These observed morphological changes were not due to oligosaccharides that could be generated following hydrolysis of the XG polymers, since XG hydrolysate induced a drastic inhibition of the overall growth process of the Arabidopsis thaliana seedlings. Histochemical test of GUS gene expression assay performed on seven and 14-days-old transgenic Arabidopsis thaliana plants carrying the CycB1;1-GUS fusion indicated that the improvement of the lateral root development by jatobá XG extracts was not correlated with the expression of this cell cycle marker gene in the root system. A potential agricultural application of jatobá seeds XG extract is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl growth were also highest compared with the wild line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young, developing fruits of nasturtium (Tropaeolum majus L.) accumulate large deposits of nonfucosylated xyloglucan (XG) in periplasmic spaces of cotyledon cells. This “storage” XG can be fucosylated by a nasturtium transferase in vitro, but this does not happen in vivo, even as a transitory signal for secretion. The only XG that is clearly fucosylated in these fruits is the structural fraction (approximately 1% total) that is bound to cellulose in growing primary walls. The two fucosylated subunits that are formed in vitro are identical to those found in structural XG in vivo. The yield of XG-fucosyltransferase activity from membrane fractions is highest per unit fresh weight in the youngest fruits, especially in dissected cotyledons, but declines when storage XG is forming. A block appears to develop in the secretory machinery of young cotyledon cells between sites that galactosylate and those that fucosylate nascent XG. After extensive galactosylation, XG traffic is diverted to the periplasm without fucosylation. The primary walls buried beneath accretions of storage XG eventually swell and lose cohesion, probably because they continue to extend without incorporating components such as fucosylated XG that are needed to maintain wall integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of the xyloglucan isolated from the seeds of Hymenaea courbaril with Humicola insolens endo-1,4-β-d-glucanase I produced xyloglucan oligosaccharides, which were then isolated and characterized. The two most abundant compounds were the heptasaccharide (XXXG) and the octasaccharide (XXLG), which were examined by reference to the biological activity of other structurally related xyloglucan compounds. The reduced oligomer (XXLGol) was shown to promote growth of wheat (Triticum aestivum) coleoptiles independently of the presence of 2,4-dichlorophenoxyacetic acid (2,4-D). In the presence of 2,4-D, XXLGol at nanomolar concentrations increased the auxin-induced response. It was found that XXLGol is a signaling molecule, since it has the ability to induce, at nanomolar concentrations, a rapid increase in an α-l-fucosidase response in suspended cells or protoplasts of Rubus fruticosus L. and to modulate 2,4-D or gibberellic acid-induced α-l-fucosidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the antimicrobial efficacy of Clearfil SE Protect (CP) and Clearfil SE Bond (CB) after curing and rinsed against five individual oral microorganisms as well as a mixture of bacterial culture prepared from the selected test organisms. Bacterial suspensions were prepared from single species of Streptococcus mutans, Streptococcus sobrinus, Streptococcus gordonii, Actinomyces viscosus and Lactobacillus lactis, as well as mixed bacterial suspensions from these organisms. Dentin bonding system discs (6 mm×2 mm) were prepared, cured, washed and placed on the bacterial suspension of single species or multispecies bacteria for 15, 30 and 60 min. MTT, Live/Dead bacterial viability (antibacterial effect), and XTT (metabolic activity) assays were used to test the two dentin system's antibacterial effect. All assays were done in triplicates and each experiment repeated at least three times. Data were submitted to ANOVA and Scheffe's f-test (5%). Greater than 40% bacteria killing was seen within 15 min, and the killing progressed with increasing time of incubation with CP discs. However, a longer (60 min) period of incubation was required by CP to achieve similar antimicrobial effect against mixed bacterial suspension. CB had no significant effect on the viability or metabolic activity of the test microorganisms when compared to the control bacterial culture. CP was significantly effective in reducing the viability and metabolic activity of the test organisms. The results demonstrated the antimicrobial efficacy of CP both on single and multispecies bacterial culture. CP may be beneficial in reducing bacterial infections in cavity preparations in clinical dentistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caffeine has already been used as an indicator of anthropogenic impacts, especially the ones related to the disposal of sewage in water bodies. In this work, the presence of caffeine has been correlated with the estrogenic activity of water samples measured using the BLYES assay. After testing 96 surface water samples, it was concluded that caffeine can be used to prioritize samples to be tested for estrogenic activity in water quality programs evaluating emerging contaminants with endocrine disruptor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrophilic and lipophilic extracts of ten cultivars of Highbush and Rabbiteye Brazilian blueberries (Vaccinium corymbosum L. and Vacciniumashei Reade, respectively) that are used for commercial production were analysed for antioxidant activity by the FRAP, ORAC, ABTS and β-carotene-linoleate methods. Results were correlated to the amounts of carotenoids, total phenolics and anthocyanins. Brazilian blueberries had relatively high concentration of total phenolics (1,622-3,457 mg gallic acid equivalents per 100 g DW) and total anthocyanins (140-318 mg cyanidin-3-glucoside equivalents per 100 g DW), as well as being a good source of carotenoids. There was a higher positive correlation between the amounts of these compounds and the antioxidant activity of hydrophilic compared to lipophilic extracts. There were also significant differences in the level of bioactive compounds and antioxidant activities between different cultivars, production location and year of cultivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78-100% inhibition) and 40mM KCl (45-90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K(+) were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.