880 resultados para wood-plastic composite


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using cellulosic reinforcement to produce plastic composites is a globally growing trend. One of such materials are wood-plastic composites, which are an extensively studied group of materials for which the global industry is looking for new applications. Issues such as bondability, durability and fire resistance still require development to improve the usability of the wood-plastic composite material. Improvement of the usability of wood-plastic composites is studied in this thesis through the effects of using selected modification technology in wood and plastic industry. The applied modification methods are surface by mechanical abrasion and plasma, chemical impregnation of wood flour, and structural modification by the co-extrusion process. The study shows that the properties of WPC can be influenced by the selected modification methods. The selected methods are also found to be able to result as improvement in the properties of the material. The may also affect other than just the targeted properties of the end-product, either in a positive or a negative manner. Therefore modification as performance improvement should be considered as a caseby- case study. Introducing WPC materials for new applications can be done by using modification technology. Structuralmodification can possibly be used to reduce material costs of the modified WPC material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of a recycled mineral wool filler on the various properties of wood plastic composites was studied and the critical factors affecting the formation of the properties were determined. An estimation of the volume of mineral wool fiber waste generated in the European Union between the years 2010-2020 was presented. Furthermore, the effect of fiber pre-treatment on the properties of the wood plastic composites were studied, and the environmental performance of a wood plastic composite containing recycled mineral fibers was assessed. The results showed that the volumes of construction and demolition waste and new mineral wool produced in the European Union are growing annually, and therefore also the volumes of recycled mineral wool waste generated are increasing. The study showed that the addition of recycled mineral wool into composites can enhance some of the mechanical properties and increase the moisture resistance properties of the composites notably. Recycled mineral wool as a filler in wood plastic composites can also improve the fire resistance properties of composites, but it does not protect the polymer matrix from pyrolysis. Fiber pre-treatment with silane solution improved some of the mechanical properties, but generally the use of maleated polypropylene as the coupling agent led to better mechanical and moisture resistance properties. The environmental performance of recycled mineral wool as the filler in wood plastic composites was superior compared to glass fibers. According to the findings, recycled mineral wool fibers can provide a technically and environmentally viable alternative to the traditional inorganic filler materials used in wood plastic composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this thesis is to study the impact of different mineral fillers and fire retardants on the reaction-to-fire properties of extruded/coextruded wood-plastic composites (WPCs). The impact of additives on the flammability properties of WPCs is studied by cone calorimetry. The studied properties are ignition time, peak heat release rate, total heat release, total smoke production, and mass loss rate. The effects of mineral fillers and fire retardants were found to vary with the type of additive, the type of additive combinations, the amount of additives, as well as the production method of the WPCs. The study shows that talc can be used to improve the properties of extruded WPCs. Especially ignition time, peak heat release rate and mass loss rate were found to be improved significantly by talc. The most significant improvement in the fire retardancy of coextruded WPCs was achieved in combinations of natural graphite and melamine. Ignition time, peak heat release rate and total smoke production were improved essentially. High increase in smoke production was found in samples where the amount of ammonium polyphosphate was 10% or higher. Coextrusion as a structural modification was found as a promising way to improve the flammability properties of composite materials in a cost-effective way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest towards wood-plastic composites (WPCs) is growing due to growing interest in materials with novel properties, which can replace more traditional materials, such as wood and plastic. The use of recycled materials in manufacture is also a bonus. However, the application ofWPCs has been limited because of their often poor mechanical and barrier properties, which can be improved by incorporation of the reinforcing fillers. Nanosized fillers, having a large surface area, can significantly increase interfacial interactions in the composite on molecular level, leading to materials with new properties. The review summarizes the development trends in the use on nanofillers for WPC design, which were reported in accessible literature during the last decade. The effect of the nanofillers on the mechanical properties, thermal stability, flammability and wettability ofWPC is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the optimization of an extrusion die designed for the production of a wood–plastic composite (WPC) decking profile is investigated. The optimization was performed with the help of numerical tools, more precisely, by solving the continuity and momentum conservation equations that govern such flow, and aiming to balance properly the flow distribution at the extrusion die flow channel outlet. To capture the rheological behavior of the material, we used a Bird-Carreau model with parameters obtained from a fit to the (shear viscosity versus shearrate) experimental data, collected from rheological tests. To yield a balanced output flow, several numerical runs were performed by adjusting the flow restriction at different regions of the flow-channel parallel zone crosssection. The simulations were compared with the experimental results and an excellent qualitative agreement was obtained, allowing, in this way, to attain a good balancing of the output flow and emphasizing the advantages of using numerical tools to aid the design of profile extrusion dies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building industry is a high volume branch which could provide prominent markets for wood based interior decoration solutions. Competition in interior decoration markets requires versatility in appearance. Versatility in wood appearance and added value could be achieved by printing grain patterns of different species or images directly onto wood. The problem when planning wood printing’s implementing into durable applications is basically how to transfer a high quality image or print sustainably onto wood, which is porous, heterogeneous, dimensionally unstable, non-white and rough. Wood preservation or treating, and modification can provide durability against degradation but also effect to the surface properties of wood which will effect on printability. Optimal adhesion is essential into print quality, as too high ink absorbance can cause spreading and too low ink absorbance cause pale prints. Different printing techniques have different requirements on materials and production. The direct printing on wood means, that intermedias are not used. Printing techniques with flexible printing plates or in fact non-impact techniques provide the best basis for wood printing. Inkjet printing of wood with different mechanical or chemical surface treatments, and wood plastic composite material gave good results that encourage further studies of the subject. Sanding the wood surface anti-parallel to the grain gave the best overall printing quality. Spreading parallel to the grain could not be avoided totally, except in cases where wood was treated hydrophobic so adhesion of the ink was not sufficient. Grain pattern of the underlying wood stays clearly visible in the printed images. Further studies should be made to fine tune the methods that already gave good results. Also effects of moisture content of wood, different inks, and long-term exposure to UV-radiation should be tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times the packaging industry is finding means to maximize profit. Wood used to be the most advantageous and everyday material for packaging, worktables, counters, constructions, interiors, tools and as materials and utensils in the food companies in the world. The use of wood has declined vigorously, and other materials like plastic, ceramic, stainless steel, concrete, and aluminum have taken its place. One way that the industry could reduce its cost is by finding possibilities of using wood for primary packaging after which it can be safely recycled or burned as a carbon source for energy. Therefore, the main objective of this thesis is to investigate the possibility of press-forming a wood film into primary packaging. In order to achieve the stated objectives, discussion on major characteristics of wood in terms of structure, types and application were studied. Two different wood species, pine and birch were used for the experimental work. These were provided by a local carpentry workshop in Lappeenranta and a workshop in Ruokolahti supervised by Professor Timo Kärki. Laboratory tests were carried out at Lappeenranta University of Technology FMS workshop on Stenhøj EPS40 M hydraulic C-frame press coupled with National Instruments VI Logger and on the Adjustable packaging line machine at LUT Packaging laboratory. The tests succeeded better on the LUT packaging line than on the Stenhoj equipment due to the integrated heating system in the machine. However, there is much work to be done before the quality of a tray produced from the wood film is comparable to that of the wood plastic composite tray.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research the aim was produce and evaluate a plastic composite using recycled polypropylene (PP) and fibers from sugarcane bagasse residues (SC), without the use of additives. This analysis was based on laboratorial tests for physical and mechanical characterization, according to the standards ASTM D256-00, D638-101 and D570-98 were analyzed: water absorption, thickness swelling, impact resistance, tensile strength and its correspondent deformation. For comparison it was elaborated three different compositions: 100% PP; 80% PP+20%SC; 70%PP+30%SC. The results indicate a positive correlation with the content of fiber and water absorption and thickness swelling. In the tension tests, the composites with fibers increase the value of resistance for physical efforts, bringing advantages as durability and integrity of the material, showing a viability of the composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research the aim was produce and evaluate a plastic composite using recycled polypropylene (PP) and fibers from sugarcane bagasse residues (SC), without the use of additives. This analysis was based on laboratorial tests for physical and mechanical characterization, according to the standards ASTM D256-00, D638-101 and D570-98 were analyzed: water absorption, thickness swelling, impact resistance, tensile strength and its correspondent deformation. For comparison it was elaborated three different compositions: 100% PP; 80% PP+20%SC; 70%PP+30%SC. The results indicate a positive correlation with the content of fiber and water absorption and thickness swelling. In the tension tests, the composites with fibers increase the value of resistance for physical efforts, bringing advantages as durability and integrity of the material, showing a viability of the composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Für eine Beurteilung von Produkten bzw. Produktsystemen im Maschinenbau spielen neben technischen Kennwerten immer mehr die Umweltauswirkungen der Systeme eine wichtige Rolle. Diese Anforderungen haben die Nachfrage für nachhaltige und umweltfreundliche Konstruktionswerkstoffe im Maschinenbau erhöht. Eine Möglichkeit für solche ökologisch vorteilhaften Werkstoffe stellen ausgewählte Holzwerkstoffe dar. Mit diesen Holzwerkstoffen sollen technische Produkte entwickelt werden, welche den Unternehmen die Möglichkeit eröffnet, ihren unternehmerischen Beitrag zur Nachhaltigkeit zu steigern und wirtschaftliche Vorteile zu erzielen. Durch diesen Ansatz ist ein gewisses Maß an Ressourcen- und Energieeffizienz verbunden, dass sich kurzfristig und / oder langfristig wirtschaftlich lohnt. Ein damit verbundener gesellschaftlicher Imagegewinn erzeugt einen zusätzlichen Nutzen. Als sogenannte GLP (Green Logistics Plant) wird diese Art der Holzkonstruktion gegenwärtig im Bereich der Fördertechnik entwickelt und angewendet. Ein Anwendungsbeispiel innerhalb der GLP stellt das Gestellsystem für einen Skidförderer dar. Um die ökologische Wirkung der Konstruktionswerkstoffe transparent und nachvollziehbar zu untersuchen, werden vordergründig die Kategorien des Treibhauspotenzials und des (Primär-) Energieaufwandes genutzt. Weiterhin werden die Wirkungskategorien Versauerung, Eutrophierung, Sommersmog und Ozonabbau analysiert. Ergänzend zu bestehenden Untersuchungen soll die ökologische Vorteilhaftigkeit von Holzfurnierlagenverbundwerkstoffe (Wood Veneer Composite – WVC), Baustahl, verzinktem Stahl und Aluminiumlegierungen in der Lebensphase Produktion untersucht werden. Anschließend werden die Ergebnisse auf das Gestell eines Skid-Fördersystems aus WVC und Baustahl übertragen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work the benefits of using graphics processing units (GPU) to aid the design of complex geometry profile extrusion dies, are studied. For that purpose, a3Dfinite volume based code that employs unstructured meshes to solve and couple the continuity, momentum and energy conservation equations governing the fluid flow, together with aconstitutive equation, was used. To evaluate the possibility of reducing the calculation time spent on the numerical calculations, the numerical code was parallelized in the GPU, using asimple programing approach without complex memory manipulations. For verificationpurposes, simulations were performed for three benchmark problems: Poiseuille flow, lid-driven cavity flow and flow around acylinder. Subsequently, the code was used on the design of two real life extrusion dies for the production of a medical catheter and a wood plastic composite decking profile. To evaluate the benefits, the results obtained with the GPU parallelized code were compared, in terms of speedup, with a serial implementation of the same code, that traditionally runs on the central processing unit (CPU). The results obtained show that, even with the simple parallelization approach employed, it was possible to obtain a significant reduction of the computation times.