946 resultados para wireless local area


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates wireless intrusion detection techniques for detecting attacks on IEEE 802.11i Robust Secure Networks (RSNs). Despite using a variety of comprehensive preventative security measures, the RSNs remain vulnerable to a number of attacks. Failure of preventative measures to address all RSN vulnerabilities dictates the need for a comprehensive monitoring capability to detect all attacks on RSNs and also to proactively address potential security vulnerabilities by detecting security policy violations in the WLAN. This research proposes novel wireless intrusion detection techniques to address these monitoring requirements and also studies correlation of the generated alarms across wireless intrusion detection system (WIDS) sensors and the detection techniques themselves for greater reliability and robustness. The specific outcomes of this research are: A comprehensive review of the outstanding vulnerabilities and attacks in IEEE 802.11i RSNs. A comprehensive review of the wireless intrusion detection techniques currently available for detecting attacks on RSNs. Identification of the drawbacks and limitations of the currently available wireless intrusion detection techniques in detecting attacks on RSNs. Development of three novel wireless intrusion detection techniques for detecting RSN attacks and security policy violations in RSNs. Development of algorithms for each novel intrusion detection technique to correlate alarms across distributed sensors of a WIDS. Development of an algorithm for automatic attack scenario detection using cross detection technique correlation. Development of an algorithm to automatically assign priority to the detected attack scenario using cross detection technique correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEEE 802.11 based wireless local area networks (WLANs) are being increasingly deployed for soft real-time control applications. However, they do not provide quality-ofservice (QoS) differentiation to meet the requirements of periodic real-time traffic flows, a unique feature of real-time control systems. This problem becomes evident particularly when the network is under congested conditions. Addressing this problem, a media access control (MAC) scheme, QoS-dif, is proposed in this paper to enable QoS differentiation in IEEE 802.11 networks for different types of periodic real-time traffic flows. It extends the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) by introducing a QoS differentiation method to deal with different types of periodic traffic that have different QoS requirements for real-time control applications. The effectiveness of the proposed QoS-dif scheme is demonstrated through comparisons with the IEEE 802.11e EDCA mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally,we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system. £.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Personal Area Networks provide a pivotal role in local area network technology complementing traditional Wireless Local Area Network technologies. Bluetooth, ZigBee and NFC (Near Field Communications) have emerged as key WPAN technologies with UWB (Ultra Wide Band) standards currently evolving. They are however subject to the usual range of security vulnerabilities found in wireless LANs such as spoofing, snooping, man-in-the-middle, denial of service and other attacks. However security in WPANs is not as mature as it is in Wireless LANs and further work is needed in order to provide comparable protection. This paper examines a range of WPAN technologies and security issues and proposes protection mechanisms that can mitigate risk in each case. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using seven strategically placed, time-synchronized bodyworn receivers covering the head, upper front and back torso, and the limbs, we have investigated the effect of user state: stationary or mobile and local environment: anechoic chamber, open office area and hallway upon first and second order statistics for on-body fading channels. Three candidate models were considered: Nakagami, Rice and lognormal. Using maximum likelihood estimation and the Akaike information criterion it was established that the Nakagami-m distribution best described small-scale fading for the majority of on-body channels over all the measurement scenarios. When the user was stationary, Nakagami-m parameters were found to be much greater than 1, irrespective of local surroundings. For mobile channels, Nakagami-m parameters significantly decreased, with channels in the open office area and hallway experiencing the worst fading conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Body Area Networks (WBANs) consist of a number of miniaturized wearable or implanted sensor nodes that are employed to monitor vital parameters of a patient over long duration of time. These sensors capture physiological data and wirelessly transfer the collected data to a local base station in order to be further processed. Almost all of these body sensors are expected to have low data-rate and to run on a battery. Since recharging or replacing the battery is not a simple task specifically in the case of implanted devices such as pacemakers, extending the lifetime of sensor nodes in WBANs is one of the greatest challenges. To achieve this goal, WBAN systems employ low-power communication transceivers and low duty cycle Medium Access Control (MAC) protocols. Although, currently used MAC protocols are able to reduce the energy consumption of devices for transmission and reception, yet they are still unable to offer an ultimate energy self-sustaining solution for low-power MAC protocols. This paper proposes to utilize energy harvesting technologies in low-power MAC protocols. This novel approach can further reduce energy consumption of devices in WBAN systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major challenges in healthcare wireless body area network (WBAN) applications is to control congestion. Unpredictable traffic load, many-to-one communication nature and limited bandwidth occupancy are among major reasons that can cause congestion in such applications. Congestion has negative impacts on the overall network performance such as packet losses, increasing end-to-end delay and wasting energy consumption due to a large number of retransmissions. In life-critical applications, any delay in transmitting vital signals may lead to death of a patient. Therefore, in order to enhance the network quality of service (QoS), developing a solution for congestion estimation and control is imperative. In this paper, we propose a new congestion detection and control protocol for remote monitoring of patients health status using WBANs. The proposed system is able to detect congestion by considering local information such as buffer capacity and node rate. In case of congestion, the proposed system differentiates between vital signals and assigns priorities to them based on their level of importance. As a result, the proposed approach provides a better quality of service for transmitting highly important vital signs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.