908 resultados para wet season
Resumo:
The amount and timing of early wet-season rainfall are important for the management of many agricultural industries in north Australia. With this in mind, a wet-season onset date is defined based on the accumulation of rainfall to a predefined threshold, starting from 1 September, for each square of a 1° gridded analysis of daily rainfall across the region. Consistent with earlier studies, the interannual variability of the onset dates is shown to be well related to the immediately preceding July-August Southern Oscillation index (SOI). Based on this relationship, a forecast method using logistic regression is developed to predict the probability that onset will occur later than the climatological mean date. This method is expanded to also predict the probabilities that onset will be later than any of a range of threshold dates around the climatological mean. When assessed using cross-validated hindcasts, the skill of the predictions exceeds that of climatological forecasts in the majority of locations in north Australia, especially in the Top End region, Cape York, and central Queensland. At times of strong anomalies in the July-August SOI, the forecasts are reliably emphatic. Furthermore, predictions using tropical Pacific sea surface temperatures (SSTs) as the predictor are also tested. While short-lead (July-August predictor) forecasts are more skillful using the SOI, long-lead (May-June predictor) forecasts are more skillful using Pacific SSTs, indicative of the longer-term memory present in the ocean.
Resumo:
Pasture degradation, particularly that attributable to overgrazing, is a significant problem across the northern Australian rangelands. Although grazing studies have identified the scope for wet season resting strategies to be used to rehabilitate degraded pastures, the economic outcome of these strategies has not been extensively demonstrated. An exploratory study of the prospective economic value of wet season resting is presented using an economic simulation model of a 28000 ha beef enterprise located in the Charters Towers region of north-eastern Australia to explore seven hypothetical scenarios centred on the projected performance of a wet season resting strategy. A series of 20-year simulations for a range of pasture recovery profiles, stocking capacity, animal productivity responses, beef prices and agistment options are compared with a baseline scenario of taking no action. Estimates of the net present value of the 20-year difference in total enterprise gross margins between the various resting options and the 'do nothing' option identify that wet season resting can offer a positive economic return for the range of scenarios examined, although this is contingent on the assumptions that are made concerning the trajectories of change in carrying capacity and animal productivity. Some implications for management and policy making to support the practical implementation of wet season resting strategies are discussed.
Resumo:
Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12° N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional (latitudinal versus vertical) meteorological model coupled with an O3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16° N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h−1 over the vegetated region whilst it reaches up to 0.75 ppbv h−1 at 16° N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12° N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5–6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.
Resumo:
Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12 degrees N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional ( latitudinal versus vertical) meteorological model coupled with an O-3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16 degrees N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h(-1) over the vegetated region whilst it reaches up to 0.75 ppbv h(-1) at 16 degrees N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12 degrees N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5-6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.
Resumo:
A quarter of a century of daily rainfall data from the Global Telecommunications System are used to define the temporal and spatial variability of the start of the wet season over Africa and surrounding extreme south of Europe and parts of the Middle East. From 1978 to 2002, the start of the wet season arrived later in the year for the majority of the region, as time progressed. In some parts of the continent, there was an annual increase in the start date of up to 4 days per year. On average, the start of the wet season arrived 9–21 days later from 1978 to 2002, depending on the threshold used to define the start of the rains (varying from 10–30 mm over 2 days, with no dry period in the following 10 days). It is noted that the inter-annual variability of the start of the wet season is high with the range of start dates varying on average from 116 to 142 days dependent on the threshold used to determine the start date. These results may have important implications for agriculturists on all levels (from the individual farmer to those responsible for regional food supply), as knowledge of potential future climate changes starts to play an increasingly important role in the agricultural decision-making process, such as sowing and harvesting times.
Resumo:
The physiological performance of four cacao clones was examined under three artificial shade regimes over the course of a year in Ghana. Plants under light shade had significantly higher photosynthetic rates in the rainy seasons whereas in the dry season there was a trend of higher photosynthetic rates under heavy shade. The results imply that during the wet seasons light was the main limiting factor to photosynthesis whereas in the dry season vapour pressure deficit was the major factor limiting photosynthesis through stomatal regulation. Leaf area was generally lower under heavier shade but the difference between shade treatments varied between clones. Such differences in leaf area allocation appeared to underlie genotypic differences in final biomass production in response to shade. The results suggest that shade for young cacao should be provided based on the current ambient environment and genotype.
Resumo:
Gochnatia polymorpha (Less.) Cabrera is a widespread tree species found in different physiognomies of neotropical savanna (cerrado) formations of south-eastern Brazil. The present study describes some leaf anatomical characteristics of this species as a function of the time of leaf flush, during dry or wet seasons. This species presents anatomical plasticity in the cuticle, palisade parenchyma and abaxial epidermis as well as in stomatal size and stomatal and trichome density, which are leaf structures linked with water-status control. Leaf structure changed to suit the particular environmental conditions during dry and wet seasons. The production of different wet-and dry-season leaf types in G. polymorpha could be a response to drought and an adaptation to environmental constraints in the cerrado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
A pivotal component of hydrological restoration of the Florida Everglades is the improvement of water conveyance to Everglades National Park by the degradation of the current network of canals, roadways and levees. The Tamiami Trail (L29) road/canal complex represents a major barrier to natural water flows into the park and a variety of modification options for flow improvement are currently being explored, including the installation of spreader swales immediately downstream of culverts conveying water under Tamiami Trail from the L29 canal into Everglades National Park. In this study, we evaluated water column chemistry and wet-season diatom community structure to provide baseline information for use in future monitoring activities related to the proposed Tamiami Trail modifications. Water chemistry showed pronounced fluctuations in response to precipitation and anthropogenically mediated hydrological events. Differences in water quality variables among sites were dampened during periods of inundation, and became more pronounced during periods of low canal stage, suggesting the importance of small-scale mechanisms related to isolation of habitat patches. Diatom assemblages were unexpectedly speciose (127 taxa in 40 samples) compared to typical Everglades assemblages, and spatially heterogeneous in sites associated with concentric areas of dense vegetation immediately downstream of culverts. We also observed significant compositional dissimilarities among transects, indicating that culvert pool and north transect assemblages were substantially influenced by propagule input from the canal and areas to the north, while south transect sites were compositionally similar to typical sawgrass prairie diatom communities. Central transect sites were compositionally intermediate to their north and south counterparts. We propose that the position and spatial extent of this “transitional assemblage” is a sensitive indicator of subtle environmental change related to Tamiami Trail modifications.
Resumo:
Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September-October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1-1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.
Resumo:
In the Metropolitan Area of Sao Paulo (MASP), located in southeastern Brazil, surface ozone concentrations are often well above the national air quality standards. In this experimental study, we attempted to characterize the vertical profile of atmospheric ozone and transport of the ozone plume in the boundary layer, using data from the first ozone soundings ever taken in the MASP. In 2006, we launched fifteen ozonesondes: eight from 15 to 18 May (dry season); and seven from 30 October to 1 November (wet season). Vertical ozone mixing ratios in the troposphere were approximately 40 ppb, reaching maximum values of approximately 60 ppb during the dry-season campaign and approximately 100 ppb during the wet-season campaign. In the first and second campaigns, the mean tropospheric ozone column abundance was 28.2 and 41.3 DU, respectively, which can be attributed to the considerable variation in the annual temperature cycle over the region. To determine the effect that biomass burning has on ozone concentrations over the MASP, we analyzed wind trajectories and satellite-derived fire counts. We cannot state unequivocally that biomass burning contributed to higher ozone concentrations above the boundary layer during the experimental campaigns. In the boundary layer, ozone concentrations increase with altitude, peaking at the base of the inversion layer, suggesting that local emissions of volatile organic compounds and nitrogen oxides play a significant role in the lower troposphere over MASP, influencing ozone formation not only at the surface but also vertically in the atmosphere and in distant regions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, multiwavelength polarization Raman lidar observations of optical and microphysical particle properties over the Amazon Basin are presented. The fully automated advanced Raman lidar was deployed 60 km north of Manaus, Brazil (2.5 degrees S, 60 degrees W) in the Amazon rain forest from January to November 2008. The measurements thus cover both the wet season (Dec-June) and the dry or burning season (July-Nov). Two cases studies of young and aged smoke plumes are discussed in terms of spectrally resolved optical properties (355, 532, and 1064 nm) and further lidar products such as particle effective radius and single-scattering albedo. These measurement examples confirm that biomass burning aerosols show a broad spectrum of optical, microphysical, and chemical properties. The statistical analysis of the entire measurement period revealed strong differences between the pristine wet and the polluted dry season. African smoke and dust advection frequently interrupt the pristine phases during the wet season. Compared to pristine wet season conditions, the particle scattering coefficients in the lowermost 2 km of the atmosphere were found to be enhanced, on average, by a factor of 4 during periods of African aerosol intrusion and by a factor of 6 during the dry (burning) season. Under pristine conditions, the particle extinction coefficients and optical depth for 532 nm wavelength were frequently as low as 10-30 Mm(-1) and <0.05, respectively. During the dry season, biomass burning smoke plumes reached to 3-5 km height and caused a mean optical depth at 532 nm of 0.26. On average during that season, particle extinction coefficients (532 nm) were of the order of 100 Mm(-1) in the main pollution layer (up to 2 km height). Angstrom exponents were mainly between 1.0 and 1.5, and the majority of the observed lidar ratios were between 50-80 sr.