558 resultados para weld bead
Resumo:
Welded equipment for cryogenic applications is utilized in chemical, petrochemical, and metallurgical industries. One material suitable for cryogenic application is austenitic stainless steel, which usually doesn`t present ductile/brittle transition temperature, except in the weld metal, where the presence of ferrite and micro inclusions can promote a brittle failure, either by ferrite cleavage or dimple nucleation and growth, respectively. A 25-mm- (1-in.-) thick AISI 304 stainless steel base metal was welded with the SAW process using a 308L solid wire and two kinds of fluxes and constant voltage power sources with two types of electrical outputs: direct current electrode positive and balanced square wave alternating current. The welded joints were analyzed by chemical composition, microstructure characterization, room temperature mechanical properties, and CVN impact test at -100 degrees C (-73 degrees F). Results showed that an increase of chromium and nickel content was observed in all weld beads compared to base metal. The chromium and nickel equivalents ratio for the weld beads were always higher for welding with square wave AC for the two types of fluxes than for direct current. The modification in the Cr(eq)/Ni(eq) ratio changes the delta ferrite morphology and, consequently, modifies the weld bead toughness at lower temperatures. The oxygen content can also affect the toughness in the weld bead. The highest absorbed energy in a CVN impact test was obtained for the welding condition with square wave AC electrical output and neutral flux, followed by DC(+) electrical output and neutral flux, and square wave AC electrical output and alloyed flux.
The effects of real time control of welding parameters on weld quality in plasma arc keyhole welding
Resumo:
Joints intended for welding frequently show variations in geometry and position, for which it is unfortunately not possible to apply a single set of operating parameters to ensure constant quality. The cause of this difficulty lies in a number of factors, including inaccurate joint preparation and joint fit up, tack welds, as well as thermal distortion of the workpiece. In plasma arc keyhole welding of butt joints, deviations in the gap width may cause weld defects such as an incomplete weld bead, excessive penetration and burn through. Manual adjustment of welding parameters to compensate for variations in the gap width is very difficult, and unsatisfactory weld quality is often obtained. In this study a control system for plasma arc keyhole welding has been developed and used to study the effects of the real time control of welding parameters on gap tolerance during welding of austenitic stainless steel AISI 304L. The welding tests demonstrated the beneficial effect of real time control on weld quality. Compared with welding using constant parameters, the maximum tolerable gap width with an acceptable weld quality was 47% higher when using the real time controlled parameters for a plate thickness of 5 mm. In addition, burn through occurred with significantly larger gap widths when parameters were controlled in real time. Increased gap tolerance enables joints to be prepared and fit up less accurately, saving time and preparation costs for welding. In addition to the control system, a novel technique for back face monitoring is described in this study. The test results showed that the technique could be successfully applied for penetration monitoring when welding non magnetic materials. The results also imply that it is possible to measure the dimensions of the plasma efflux or weld root, and use this information in a feedback control system and, thus, maintain the required weld quality.
Resumo:
The application of flux cored arc welding (FCAW) has increased in manufacturing and fabrication. Even though FCAW is well known for its good capability in producing quality welds, few reports have been published on the cause of the relatively high diffusible hydrogen content in the weld metal and its relation with the ingredients used in the wire production and with the welding parameters (mainly welding current). This paper describes experiments where data obtained from weld metal diffusible hydrogen analysis, metal droplet collection, and high-speed recording of metal droplet transfer were used to evaluate the effect of welding current on diffusible hydrogen content in the weld metal. The results from gas chromatography analysis showed that weld metal hydrogen content indeed increased with welding current. A polynomial regressional analysis concluded that hydrogen increase with current was better described by a linear function with proportional constant of approximately 0.7 or 70%. Different from the GMA welding transfer behavior, statistical analysis showed only a small increase in metal droplet size with increasing current. The metal transfer mode remained in the globular range for currents between 100 and 150 A. The most surprising findings were with the high-speed cinematography recording. Observing the high speed movies, it was possible to see that at low current, "unmelted" flux sporadically touched the weld pool but at higher current, the flux remained touching the weld pool during the whole time of droplet formation and transfer. It is believed that since the flux has ingredients that contain hydrogen, hydrogen passes through the arc undisturbed, going to the weld bead intact and increasing the hydrogen content in the weld metal. Another important observation is regarding to droplet size. Droplet size increased with increasing current because forces from decomposed gases from the flux could sustain the droplets, retarding their transfer and allowing them to grow.
Resumo:
Suojakaasun päätehtävänä on suojata hitsaustapahtumaa ympäröivän ilman vaikutukselta. Päätehtävän lisäksi suojakaasullavoidaan vaikuttaa suoraan tai välillisesti lähes kaikkiin hitsauksen asioihin, joista laatu, tehokkuus ja taloudellisuus muodostuvat. Suojakaasuja tarvitsevat hitsausmenetelmät ovat: kaasukaarihitsausprosessit (MIG/MAG-, TIG- ja plasmahitsaus), laserhitsaus sekä näiden yhdistelmät eli hybridihitsausmenetelmät sekä MIG-juotto. Hitsaussuojakaasujen peruskaasu tänä päivänä on argon, johon hitsausprosessista tai materiaalistariippuen sekoitetaan hiilidioksidia, heliumia, vetyä tai happea. Pääsääntöisesti hitsaussuojakaasut ovat kahden komponentin kaasuja, mutta 3-komponenttikaasut ovat yleistymässä. Sopivalla suojakaasuseostuksella saadaan erittäin merkittävä hyöty tuottavuuden lisääntyessä ja laadun parantuessa. Suojakaasujen oikealla toimitusmuodolla on merkittävä vaikutus kokonaiskustannuksiin. Uudet, kehittyneet sekoitinlaitteet mahdollistavat tarkat osakomponenttien sekoittamiset hitsauspaikalla. Seokset ovat jatkuvasti analysoitavissa ja jäljitettävissä. Suojakaasujen kierrätys on erityisesti kalliiden kaasujen, kuten helium ja argon, kohdalta tulevaisuuden haaste ja mahdollisuus. Suojakaasulla on suuri merkitys hitsauksen tuottavuuteen, taloudellisuuteen ja myös hitsausympäristöön ja työturvallisuuteen. Robottihitsauksen lisääntyminen asettaa vaatimuksia, joihinoikein valitulla suojakaasulla voidaan myönteisesti vaikuttaa. Tehokashitsaus on valmistusprosessin tärkeä osa, jossa oikein valituilla suojakaasuilla saavutetaan merkittävä tuottavuuden lisäys vaikuttamalla kaariominaisuuksiin, tunkeumaan, roiskeisiin, nopeuteen, hitsimetallurgiaan, lämmöntuontiin ja hitsausympäristöön. Diplomityössä tutkittiin casena Peikko Finland Oy:n suojakaasujärjestelmät, niiden tehokkuus, toimivuus ja sopivuus konepajan tuotantoon ja erityisesti robottihitsaukseen.
Resumo:
High reflectivity and high thermal conductivity, high vapour pressure of alloyingelements as well as low liquid surface tension and low ionisation potential, make laser welding of aluminium and its alloys a demanding task.Problems that occur during welding are mainly process instabilities of the keyhole and the melt pool, increased plasma formation above the melt pool and loss of alloying elements. These problems lead to unwanted metallurgical defects like hot cracks and porosity in the weld bead andother problems concerning the shape and appearance of the weld bead. In order to minimise the defects and improve the weld quality, the process and beam parameters need to be carefully adjusted along with a consideration concerning the use of filler wire for the welding process. In this work the welding of 3,0 mm thick grade 5083 aluminium alloy plates using a 3,0 kW Nd:YAG laser with grade 5183 filler wire addition is investigated. The plates were welded as butt joints with air gap sizes 0,5 mm, 0,7mm and 1,0 mm. The analysis of the weld beads obtained from the weldedsamples showed that the least imperfections were produced with 0,7 mm air gaps at moderate welding speeds. The analysis also covered the calculation of the melting efficiency and the study of the shape of the weld bead. The melting efficiency was on average around 20 % for the melting process of the welded plates. The weld beads showed the characteristic V-shape of a laser weld and retained this shape during the whole series of experiments.
Resumo:
The Tandem-GMAW method is the latest development as the consequences of improvements in the welding methods. The twin-wire and then the Tandem-method with the separate power sources has got a remarkable place in the welding of many types of materials with different joint types. The biggest advantage of Tandem welding method is the flexibility of choosing both the electrodes of different types from each other according to the type of the parent material. This is possible because of the feasibility of setting the separate welding parameters for both the wires. In this thesis work the effect of the variation in three parameters on the weld bead in Tandem-GMA welding method is studied. Theses three parameters are the wire feed rate in the slave wire, the wire feed rate in the master wire and the voltage difference in both the wires. The results are then compared to study the behaviour of the weld bead with the change in these parameters.
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.
Resumo:
Konecranes Corporation manufactures huge steel structures in 16 factories worldwide, in which the environment and quality varies. The company has a desire to achieve the same weld quality in each factory, regardless of the manufacturing place. The main subject of this master’s thesis was to develop the present box girder crane welding process, submerged arc welding and especially the fillet welding. Throughput time and manufacturing costs can be decreased by welding the full penetration fillet weld without a bevel, changing present groove types for more appropriate ones and by achieving the desired weld quality on the first time. Welding experiments of longitudinal fillet welding were made according to the present challenges, which the manufacturing process is facing. In longitudinal fillet welding tests the main focus was to achieve full penetration fillet weld for 6, 8 and 10 millimeters thick web plates with single and twin wire submerged arc welding. Full penetration was achieved with all the material thicknesses, both with single and twin wire submerged arc welding processes. The main problem concerning the weld was undercutting and shape of the weld bead. The question about insufficiency of presently used power sources with twin wire was risen up during testing, due to the thicknesses that require high welding current. Bigger power source is required when box girders are welded nonstop, if twin wire is used. For single wire process the penetration was achieved with significantly less amperage than with twin wire.
Resumo:
In ship and offshore terminal construction, welded cross sections are thick and the number of welds very high. Consequently, there are two aspects of great importance; cost and heat input. Reduction in the welding operation time decreases the costs of the work force and avoids excessive heat, preventing distortion and other weld defects. The need to increase productivity while using a single wire in the GMAW process has led to the use of a high current and voltage to improve the melting rate. Unfortunately, this also increases the heat input. Innovative GMAW processes, mostly implemented for sheet plate sections, have shown significant reduction in heat input (Q), low distortion and increase in welding speed. The aim of this study is to investigate adaptive pulsed GMAW processes and assess relevant applications in the high power range, considering possible benefits when welding thicker sections and high yield strength steel. The study experimentally tests the usability of adaptive welding processes and evaluates their effects on weld properties, penetration and shapes of the weld bead.The study first briefly reviews adaptive GMAW to evaluate different approaches and their applications and to identify benefits in adaptive pulsed. Experiments are then performed using Synergic Pulsed GMAW, WiseFusionTM and Synergic GMAW processes to weld a T-joint in a horizontal position (PB). The air gap between the parts ranges from 0 to 2.5 mm. The base materials are structural steel grade S355MC and filler material G3Si1. The experiment investigates heat input, mechanical properties and microstructure of the welded joint. Analysis of the literature reveals that different approaches have been suggested using advanced digital power sources with accurate waveform, current, voltage, and feedback control. In addition, studies have clearly indicated the efficiency of lower energy welding processes. Interest in the high power range is growing and a number of different approaches have been suggested. The welding experiments in this study reveal a significant reduction of heat input and a weld microstructure with the presence of acicular ferrite (AF) beneficial for resistance to crack propagation. The WiseFusion bead had higher dilution, due to the weld bead shape, and low defects. Adaptive pulse GMAW processes can be a favoured choice when welding structures with many welded joints. The total heat reduction mitigates residual stresses and the bead shape allows a higher amperage limit. The stability of the arc during the process is virtually spatter free and allows an increase in welding speed.
Resumo:
Käytettävyydeltään huippuluokkaa olevan pulssi-MIG/MAG-hitsausvalokaaren toteuttaminen vaatii runsaasti tietoa eri pulssiparametreista ja niiden vaikutuksista hitsaukseen. Näihin vaikutuksiin liittyvä tieteellinen tutkimus on ollut melko vähäistä. Erityisesti tieto pulssimuodon vaikutuksista hitsausääneen on perustunut lähinnä kokemuksen tuomaan tuntumaan. Tässä diplomityössä tutkittiin pulssimuodon vaikutusta valokaaren käytettävyyteen pulssi-MIG/MAG-hitsauksessa. Käytettävyys käsittää tässä tapauksessa hitsausäänen, hitsin geometrian ja hitsausominaisuudet. Tutkimuksen alussa perehdyttiin kirjallisuuteen ja tuoreimpiin tutkimuksiin, jonka jälkeen vertailtiin erilaisia pulssimuotoja keskenään hitsauskokeiden avulla. Hitsausääneen ja hitsin geometriaan liittyvät kokeet suoritettiin mekanisoidusti. Hitsausääneen liittyvät mittaukset suoritettiin luokan 1 äänitasomittarilla ja tuloksia analysoitiin tietokoneohjelmistolla. Hitsien geometrioiden vertailu suoritettiin makrohietutkimuksena. Hitsausominaisuuksia tutkittiin suurnopeuskameran ja oskilloskoopin, sekä lopulta käsinhitsauskokeiden avulla. Kaikissa koevaiheissa pulssimuodon tarkasteluun käytettiin oskilloskooppia. Lisäksi käytössä oli toinen oskilloskooppi, jolla tarkasteltiin hitsausvirran spektriä. Pulssimuodon muokkaamiseen käytettiin erillistä tietokoneohjelmaa. Työn kokeellinen osuus keskittyi pulssi-MAG-hitsaukseen. Pulssimuotoa muokkaamalla saatiin aikaan miellyttävämpi hitsausääni. Lisäksi havaittiin, että pulssimuotoa muokkaamalla hitsistä saadaan kapeampi, jolloin juuritunkeumaa saavutetaan enemmän. Käsinhitsauskokeet osoittivat muokatun pulssimuodon olevan myös hitsaajan näkökulmasta käytettävyydeltään paras pulssimuoto. Erityisesti valokaaren vakaus ja kohdistuvuus sekä suurien hitsausnopeuksien sietokyky olivat muokatun pulssimuodon etuja. Selviä haittavaikutuksia pulssimuodon muokkaamiselle ei löydetty.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
The construction of offshore structures, equipment and devices requires a high level of mechanical reliability in terms of strength, toughness and ductility. One major site for mechanical failure, the weld joint region, needs particularly careful examination, and weld joint quality has become a major focus of research in recent times. Underwater welding carried out offshore faces specific challenges affecting the mechanical reliability of constructions completed underwater. The focus of this thesis is on improvement of weld quality of underwater welding using control theory. This research work identifies ways of optimizing the welding process parameters of flux cored arc welding (FCAW) during underwater welding so as to achieve desired weld bead geometry when welding in a water environment. The weld bead geometry has no known linear relationship with the welding process parameters, which makes it difficult to determine a satisfactory weld quality. However, good weld bead geometry is achievable by controlling the welding process parameters. The doctoral dissertation comprises two sections. The first part introduces the topic of the research, discusses the mechanisms of underwater welding and examines the effect of the water environment on the weld quality of wet welding. The second part comprises four research papers examining different aspects of underwater wet welding and its control and optimization. Issues considered include the effects of welding process parameters on weld bead geometry, optimization of FCAW process parameters, and design of a control system for the purpose of achieving a desired bead geometry that can ensure a high level of mechanical reliability in welded joints of offshore structures. Artificial neural network systems and a fuzzy logic controller, which are incorporated in the control system design, and a hybrid of fuzzy and PID controllers are the major control dynamics used. This study contributes to knowledge of possible solutions for achieving similar high weld quality in underwater wet welding as found with welding in air. The study shows that carefully selected steels with very low carbon equivalent and proper control of the welding process parameters are essential in achieving good weld quality. The study provides a platform for further research in underwater welding. It promotes increased awareness of the need to improve the quality of underwater welding for offshore industries and thus minimize the risk of structural defects resulting from poor weld quality.
Resumo:
No processo de soldagem TIG (Tungstênio Inerte Gás), um dos fatores que influenciam o formato do cordão de solda é o ângulo da extremidade do eletrodo. Para estudar o comportamento do arco elétrico em função da geometria de ponta do eletrodo e suas conseqüências nos cordões de solda, efetuaram-se soldagens sobre corpos de prova sem deposição de material (bead-on-plate) através de parâmetros controlados e a mecanização do processo. Parâmetros tais como vazão do gás, velocidade de avanço da tocha e comprimento do arco foram testados para verificar a atuação em conjunto com o ângulo do eletrodo. Pela análise metalográfica (macrografia) estudaram-se os perfis dos cordões de solda, verificando-se que o ângulo exerce uma influência significativa na característica do arco tensão-corrente, na largura e profundidade de penetração da solda. Para maiores ângulos de extremidade do eletrodo obteve-se aumento na penetração, diminuição da tensão e largura do cordão de solda para uma mesma intensidade de corrente.
Resumo:
O maior objetivo deste trabalho foi estudar os efeitos da composição dos fluxos para arco submerso sobre algumas importantes características de um metal de solda ferrítico, como composição química, microestrutura, propriedades mecânicas e geometria do cordão. Para realizar tal pesquisa, vinte oito fluxos aglomerados foram elaborados de compostos de pureza comercial e utilizados em soldagens ao aorco submerso, mantendo constante todas as demais condições de soldagem. Houve uma notável influência da composição química e do índice de basicidade dos fluxos sobre os níveis de oxig~enio, silício e manganês do metal de solda. Um modelo termodinâmico, baseado no conceito de potencial de oxigênio, foi proposto para explicar as reações gás-meta-escória ocorrendo durante a soldagem. Este modelo mostrou-se usável para as reações entre silício, oxigênio e carbono, permitindo um melhor entendimento das mesmas. A composição química do metal de solda pôde ser relacionada a sua microestrutura, através de metalografia quantitativa. Foi observado que oxigênio, silício, manganês e titânio têm grande influência sobre ela. A fase mais tenaz encontrada foi a ferrita acicular. A respeito da geometria do cordão, a sílica mostrou o efeito mais forte, com os outros compostos influenciando somente o acabamento do cordão soldado.
Resumo:
To obtain a process stability and a quality weld bead it is necessary an adequate parameters set: base current and time, pulse current and pulse time, because these influence the mode of metal transfer and the weld quality in the MIG-P, sometimes requiring special sources with synergistic modes with external control for this stability. This work aims to analyze and compare the effects of pulse parameters and droplet size in arc stability in MIG-P, four packets of pulse parameters were analysed: Ip = 160 A, tp = 5.7 ms; Ip = 300 A and tp = 2 ms, Ip = 350 A, tp = 1.2 ms and Ip = 350 A, tp = 0.8 ms. Each was analyzed with three different drop diameters: drop with the same diameter of the wire electrode; droplet diameter larger drop smaller than the diameter of the wire electrode. For purposes of comparison the same was determined relation between the average current and welding speed was determined generating a constant (Im / Vs = K) for all parameters. Welding in flat plate by simple deposition for the MIG-P with a distance beak contact number (DBCP) constant was perfomed subsequently making up welding in flat plate by simple deposition with an inclination of 10 degrees to vary the DBCP, where by assessment on how the MIG-P behaved in such a situation was possible, in addition to evaluating the MIG-P with adaptive control, in order to maintain a constant arc stability. Also high speed recording synchronized with acquiring current x voltage (oscillogram) was executed for better interpretation of the transfer mechanism and better evaluation in regard to the study of the stability of the process. It is concluded that parameters 3 and 4 exhibited greater versatility; diameters drop equal to or slightly less than the diameter of the wire exhibited better stability due to their higher frequency of detachment, and the detachment of the drop base does not harm the maintenance the height of the arc