989 resultados para weekly self-scheduling
Resumo:
Within a weekly market horizon, this paper considers a power producer that sells its energy both in the pool and through weekly forward contracts. The paper provides a methodology that allows the producer to derive the self-scheduling of its production units, to select weekly forward contracts, and to obtain the offering strategy for Monday's pool. The proposed technique is based on stochastic programming and allows the producer to maximize its expected profit while controlling the risk of profit variability. A comprehensive case study is used to illustrate the characteristics of the proposed methodology. Appropriate conclusions are finally drawn.
Resumo:
This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An extensive literature exists on the problems of daily (shift) and weekly (tour) labor scheduling. In representing requirements for employees in these problems, researchers have used formulations based either on the model of Dantzig (1954) or on the model of Keith (1979). We show that both formulations have weakness in environments where management knows, or can attempt to identify, how different levels of customer service affect profits. These weaknesses results in lower-than-necessary profits. This paper presents a New Formulation of the daily and weekly Labor Scheduling Problems (NFLSP) designed to overcome the limitations of earlier models. NFLSP incorporates information on how changing the number of employees working in each planning period affects profits. NFLP uses this information during the development of the schedule to identify the number of employees who, ideally, should be working in each period. In an extensive simulation of 1,152 service environments, NFLSP outperformed the formulations of Dantzig (1954) and Keith (1979) at a level of significance of 0.001. Assuming year-round operations and an hourly wage, including benefits, of $6.00, NFLSP's schedules were $96,046 (2.2%) and $24,648 (0.6%) more profitable, on average, than schedules developed using the formulations of Danzig (1954) and Keith (1979), respectively. Although the average percentage gain over Keith's model was fairly small, it could be much larger in some real cases with different parameters. In 73 and 100 percent of the cases we simulated NFLSP yielded a higher profit than the models of Keith (1979) and Danzig (1954), respectively.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modeled by variable costs, start-up costs and technical operating constraints, such as: ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, aiming to maximize the expected profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
Proxy reports from parents and self-reported data from pupils have often been used interchangeably to identify factors influencing school travel behaviour. However, few studies have examined the validity of proxy reports as an alternative to self-reported data. In addition, despite research that has been conducted in a different context, little is known to date about the impact of different factors on school travel behaviour in a sectarian divided society. This research examines these issues using 1624 questionnaires collected from four independent samples (e.g. primary pupils, parent of primary pupils, secondary pupils, and parent of secondary pupils) across Northern Ireland. An independent sample t test was conducted to identify the differences in data reporting between pupils and parents for different age groups using the reported number of trips for different modes as dependent variables. Multivariate multiple regression analyses were conducted to then identify the impacts of different factors (e.g. gender, rural–urban context, multiple deprivations, and school management type, net residential density, land use diversity, intersection density) on mode choice behaviour in this context. Results show that proxy report is a valid alternative to self-reported data, but only for primary pupils. Land use diversity and rural–urban context were found to be the most important factors in influencing mode choice behaviour.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
Agility refers to the manufacturing system ability to rapidly adapt to market and environmental changes in efficient and cost-effective ways. This paper addresses the development of self-organization methods to enhance the operations of a scheduling system, by integrating scheduling system, configuration and optimization into a single autonomic process requiring minimal manual intervention to increase productivity and effectiveness while minimizing complexity for users. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to build future Decision Support Systems (DSS) for Scheduling in agile manufacturing environments.
Resumo:
The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.
Resumo:
Background: An estimated 285 million people worldwide have diabetes and its prevalence is predicted to increase to 439 million by 2030. For the year 2010, it is estimated that 3.96 million excess deaths in the age group 20-79 years are attributable to diabetes around the world. Self-management is recognised as an integral part of diabetes care. This paper describes the protocol of a randomised controlled trial of an automated interactive telephone system aiming to improve the uptake and maintenance of essential diabetes self-management behaviours. ---------- Methods/Design: A total of 340 individuals with type 2 diabetes will be randomised, either to the routine care arm, or to the intervention arm in which participants receive the Telephone-Linked Care (TLC) Diabetes program in addition to their routine care. The intervention requires the participants to telephone the TLC Diabetes phone system weekly for 6 months. They receive the study handbook and a glucose meter linked to a data uploading device. The TLC system consists of a computer with software designed to provide monitoring, tailored feedback and education on key aspects of diabetes self-management, based on answers voiced or entered during the current or previous conversations. Data collection is conducted at baseline (Time 1), 6-month follow-up (Time 2), and 12-month follow-up (Time 3). The primary outcomes are glycaemic control (HbA1c) and quality of life (Short Form-36 Health Survey version 2). Secondary outcomes include anthropometric measures, blood pressure, blood lipid profile, psychosocial measures as well as measures of diet, physical activity, blood glucose monitoring, foot care and medication taking. Information on utilisation of healthcare services including hospital admissions, medication use and costs is collected. An economic evaluation is also planned.---------- Discussion: Outcomes will provide evidence concerning the efficacy of a telephone-linked care intervention for self-management of diabetes. Furthermore, the study will provide insight into the potential for more widespread uptake of automated telehealth interventions, globally.
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
This paper describes part of an action research study that was designed to explore the outcomes of an ongoing program in which the participants, a group of domestic and international pre-service teachers and lecturers, worked together in reflective writing workshops. While the primary long-term goal of the program was to develop the intercultural competence and understanding of all of the participants through social activities, the development of social relationships was initiated and supported by involving the participants in weekly writing workshops that focused on shared salient skills of critical reflective thinking and writing. The focus of this paper is upon the outcomes for the international students, a cohort of second year pre-service teachers from Malaysia. Findings indicated that the program was successful in developing the Malaysian pre-service teachers’ self-confidence in perceiving themselves as writers and future teachers of writing, in shifting their focus from writing product to writing process and content, and in increasing the depth of their critical reflective thinking and writing
Resumo:
Exceeding the speed limit and driving too fast for the conditions are regularly cited as significant contributing factors in traffic crashes, particularly fatal and serious injury crashes. Despite an extensive body of research highlighting the relationship between increased vehicle speeds and crash risk and severity, speeding remains a pervasive behaviour on Australian roads. The development of effective countermeasures designed to reduce the prevalence of speeding behaviour requires that this behaviour is well understood. The primary aim of this program of research was to develop a better understanding of the influence of drivers’ perceptions and attitudes toward police speed enforcement on speeding behaviour. Study 1 employed focus group discussions with 39 licensed drivers to explore the influence of perceptions relating to specific characteristics of speed enforcement policies and practices on drivers’ attitudes towards speed enforcement. Three primary factors were identified as being most influential: site selection; visibility; and automaticity (i.e., whether the enforcement approach is automated/camera-based or manually operated). Perceptions regarding these enforcement characteristics were found to influence attitudes regarding the perceived legitimacy and transparency of speed enforcement. Moreover, misperceptions regarding speed enforcement policies and practices appeared to also have a substantial impact on attitudes toward speed enforcement, typically in a negative direction. These findings have important implications for road safety given that prior research has suggested that the effectiveness of speed enforcement approaches may be reduced if efforts are perceived by drivers as being illegitimate, such that they do little to encourage voluntary compliance. Study 1 also examined the impact of speed enforcement approaches varying in the degree of visibility and automaticity on self-reported willingness to comply with speed limits. These discussions suggested that all of the examined speed enforcement approaches (see Section 1.5 for more details) generally showed potential to reduce vehicle speeds and encourage compliance with posted speed limits. Nonetheless, participant responses suggested a greater willingness to comply with approaches operated in a highly visible manner, irrespective of the corresponding level of automaticity of the approach. While less visible approaches were typically associated with poorer rates of driver acceptance (e.g., perceived as “sneaky” and “unfair”), participants reported that such approaches would likely encourage long-term and network-wide impacts on their own speeding behaviour, as a function of the increased unpredictability of operations and increased direct (specific deterrence) and vicarious (general deterrence) experiences with punishment. Participants in Study 1 suggested that automated approaches, particularly when operated in a highly visible manner, do little to encourage compliance with speed limits except in the immediate vicinity of the enforcement location. While speed cameras have been criticised on such grounds in the past, such approaches can still have substantial road safety benefits if implemented in high-risk settings. Moreover, site-learning effects associated with automated approaches can also be argued to be a beneficial by-product of enforcement, such that behavioural modifications are achieved even in the absence of actual enforcement. Conversely, manually operated approaches were reported to be associated with more network-wide impacts on behaviour. In addition, the reported acceptance of such methods was high, due to the increased swiftness of punishment, ability for additional illegal driving behaviours to be policed and the salutary influence associated with increased face-to-face contact with authority. Study 2 involved a quantitative survey conducted with 718 licensed Queensland drivers from metropolitan and regional areas. The survey sought to further examine the influence of the visibility and automaticity of operations on self-reported likelihood and duration of compliance. Overall, the results from Study 2 corroborated those of Study 1. All examined approaches were again found to encourage compliance with speed limits, such that all approaches could be considered to be “effective”. Nonetheless, significantly greater self-reported likelihood and duration of compliance was associated with visibly operated approaches, irrespective of the corresponding automaticity of the approach. In addition, the impact of automaticity was influenced by visibility; such that significantly greater self-reported likelihood of compliance was associated with manually operated approaches, but only when they are operated in a less visible fashion. Conversely, manually operated approaches were associated with significantly greater durations of self-reported compliance, but only when they are operated in a highly visible manner. Taken together, the findings from Studies 1 and 2 suggest that enforcement efforts, irrespective of their visibility or automaticity, generally encourage compliance with speed limits. However, the duration of these effects on behaviour upon removal of the enforcement efforts remains questionable and represents an area where current speed enforcement practices could possibly be improved. Overall, it appears that identifying the optimal mix of enforcement operations, implementing them at a sufficient intensity and increasing the unpredictability of enforcement efforts (e.g., greater use of less visible approaches, random scheduling) are critical elements of success. Hierarchical multiple regression analyses were also performed in Study 2 to investigate the punishment-related and attitudinal constructs that influence self-reported frequency of speeding behaviour. The research was based on the theoretical framework of expanded deterrence theory, augmented with three particular attitudinal constructs. Specifically, previous research examining the influence of attitudes on speeding behaviour has typically focussed on attitudes toward speeding behaviour in general only. This research sought to more comprehensively explore the influence of attitudes by also individually measuring and analysing attitudes toward speed enforcement and attitudes toward the appropriateness of speed limits on speeding behaviour. Consistent with previous research, a number of classical and expanded deterrence theory variables were found to significantly predict self-reported frequency of speeding behaviour. Significantly greater speeding behaviour was typically reported by those participants who perceived punishment associated with speeding to be less certain, who reported more frequent use of punishment avoidance strategies and who reported greater direct experiences with punishment. A number of interesting differences in the significant predictors among males and females, as well as younger and older drivers, were reported. Specifically, classical deterrence theory variables appeared most influential on the speeding behaviour of males and younger drivers, while expanded deterrence theory constructs appeared more influential for females. These findings have important implications for the development and implementation of speeding countermeasures. Of the attitudinal factors, significantly greater self-reported frequency of speeding behaviour was reported among participants who held more favourable attitudes toward speeding and who perceived speed limits to be set inappropriately low. Disappointingly, attitudes toward speed enforcement were found to have little influence on reported speeding behaviour, over and above the other deterrence theory and attitudinal constructs. Indeed, the relationship between attitudes toward speed enforcement and self-reported speeding behaviour was completely accounted for by attitudes toward speeding. Nonetheless, the complexity of attitudes toward speed enforcement are not yet fully understood and future research should more comprehensively explore the measurement of this construct. Finally, given the wealth of evidence (both in general and emerging from this program of research) highlighting the association between punishment avoidance and speeding behaviour, Study 2 also sought to investigate the factors that influence the self-reported propensity to use punishment avoidance strategies. A standard multiple regression analysis was conducted for exploratory purposes only. The results revealed that punishment-related and attitudinal factors significantly predicted approximately one fifth of the variance in the dependent variable. The perceived ability to avoid punishment, vicarious punishment experience, vicarious punishment avoidance and attitudes toward speeding were all significant predictors. Future research should examine these relationships more thoroughly and identify additional influential factors. In summary, the current program of research has a number of implications for road safety and speed enforcement policy and practice decision-making. The research highlights a number of potential avenues for the improvement of public education regarding enforcement efforts and provides a number of insights into punishment avoidance behaviours. In addition, the research adds strength to the argument that enforcement approaches should not only demonstrate effectiveness in achieving key road safety objectives, such as reduced vehicle speeds and associated crashes, but also strive to be transparent and legitimate, such that voluntary compliance is encouraged. A number of potential strategies are discussed (e.g., point-to-point speed cameras, intelligent speed adaptation. The correct mix and intensity of enforcement approaches appears critical for achieving optimum effectiveness from enforcement efforts, as well as enhancements in the unpredictability of operations and swiftness of punishment. Achievement of these goals should increase both the general and specific deterrent effects associated with enforcement through an increased perceived risk of detection and a more balanced exposure to punishment and punishment avoidance experiences.