983 resultados para water-stable aggregates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Tillage systems can influence C sequestration by changing aggregate formation and C distribution within the aggregate. This study was undertaken to explore the impact of no-tillage without straw (NT-S) and with straw (NT+S), and moldboard plow without straw (MP-S) and with straw (MP+S), on soil aggregation and aggregate-associated C after six years of double rice planting in a Hydragric Anthrosol in Guangxi, southwest of China. Soil samples of 0.00-0.05, 0.05-0.20 and 0.20-0.30 m layers were wet-sieved and divided into four aggregate-size classes, >2 mm, 2.00-0.25 mm, 0.25-0.053 and <0.053 mm, respectively, for measuring aggregate associated C and humic and fulvic acids. Results showed that the soil organic carbon (SOC) stock in bulk soil was 40.2-51.1 % higher in the 0.00-0.05 m layer and 11.3-17.0 % lower in the 0.05-0.20 m layer in NT system (NT+S and NT-S) compared to the MP system (MP+S and MP-S), respectively. However, no statistical difference was found across the whole 0.00-0.30 m layer. The NT system increased the proportion of >2 mm aggregate fraction and reduced the proportion of <0.053 mm aggregates in both 0.00-0.05 and 0.05-0.20 m layers. The SOC concentration, SOC stock and humic and fulvic acids within the >0.25 mm macroaggregate fraction also significantly increased in the 0.00-0.5 m layer in NT system. However, those within the 2.00-0.25 mm aggregate fraction were significantly reduced in the 0.05-0.200 m layer under NT system. Straw incorporation increased not only the SOC stock in bulk soil, but also the proportion of macroaggregate, aggregate associated with SOC and humic and fulvic acids concentration within the aggregate. The effect of straw on C sequestration might be dependent on the location of straw incorporation. In conclusion, the NT system increased the total SOC accumulation and humic and fulvic acids within macroaggregates, thus contributing to C sequestration in the 0.00-0.05 m layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope values from calcareous nannofossils in four cores spanning the Quaternary from DSDP Site 593 in Tasman Sea are compared with the delta18O signal of planktonic and benthic foraminifers from the same samples. The classic mid-late Quaternary isotope stages are exhibited with stage 12 particularly well developed. When delta18O values of nannofossils are adjusted for coccolithophore vital effects they indicate larger (by 1-6°C) surface to bottom paleotemperature gradients and greater (by 1-3°C) changes in mean sea-surface temperature between full glacial and interglacial conditions than do delta18O values from planktonic foraminifers. Along with the foraminifers, the nannofossils record a bimodal distribution of delta18O between the early and mid-late Quaternary, indicating a significant change in global ice budget. The delta13C of nannofossils also shows a bimodal distribution, but is opposite to that for the foraminifers. Nannofossil delta18O values record a shift of c. -0.8? at isotope stage 8 corresponding to a major reduction in abundance of the previously dominant gephyrocapsids. A shift in delta13C of c. -1.5? also occurs at stage 8, and a shift in delta13C of c. +1.2? at around stage 14. The delta18O shift in nannofossils is at least a Pacific-wide phenomenon; the delta13C shifts are possibly global. The delta13C signal of nannofossils exhibits an antipathetic relationship to that of benthic foraminifers back to isotope stage 18 but no significant correlation beyond this level to the base of the Quaternary. This is interpreted as reflecting local productivity dominating global influences on delta13C since stage 18 at DSDP Site 593. The difference between nannofossil and benthic foraminifer delta13C signals (Delta13C) tends to be maximum during glacial stages and minimum during interglacials throughout the section, showing a strong correlation with the nannofossil delta180 signal. The increased partitioning of 13C between surface and bottom waters during the glacial periods may indicate heightened productivity in surface waters in the southern Tasman Sea at these times.