993 resultados para water ingestion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: O excesso de peso na população aumentou de forma significante nas últimas décadas e as bebidas gasosas tornaram-se um fator ambiental importante no comportamento alimentar das pessoas, sendo os EUA, México e Brasil, nesta ordem, os três maiores paises produtores e consumidores de refrigerantes. OBJETIVO: Investigar os efeitos da dilatação gástrica em ratos submetidos a ingestão de água gaseificada, veículo uniforme para todos os refrigerantes, sobre parâmetros metabólicos da função hepática. MÉTODOS: Foram constituídos dois grupos de 15 ratos acompanhados por 15 semanas. Ao Grupo-I, foram oferecidos 200 g/dia de ração ad libitum e 100 ml de água não gaseificada em 3 períodos diários, ao Grupo-II, foram oferecidos 200 g/dia de ração ad libitum e 100 ml de água gaseificada em 3 períodos diários; em cada grupo,foram calculados a média (x) e o desvio padrão (s); para todos os atributos estudados foi utilizado o método estatístico de teste t pareado, comparando-se GI com GII, testando-se o efeito dos tipos de água. RESULTADOS: Os resultados identificaram que os animais que foram submetidos ao tratamento com água gaseificada (Grupo-II), apresentaram um aumento de transaminase glutâmica pirúvica (TGP) e fosfatase alcalina p<0,01), tendência de aumento da transaminase glutâmica oxalacética (TGO) (0,10>p>0,05) e aumento da área gástrica com alterações morfológicas macroscópicas como o desaparecimento do pregueamento mucoso característico. CONCLUSÃO: A água gaseificada favoreceu o aumento da área gástrica com conseqüente desaparecimento macroscópico do pregueamento mucoso do órgão, que ocasionou alterações metabólicas da função hepática.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water intake was studied in albino rats with lesions in the lateral preoptic area, in the subfornical organ, and in both the lateral preoptic area and the subfornical organ. Drinking was induced by cellular dehydration, hypovolemia, hypotension (isoproterenol or caval ligation), and water deprivation. The animals with lesions in both areas showed a significant reduction in their water intake in response to cellular dehydration. Drinking due to extracellular dehydration was reduced in the animals that received only subfornical organ lesions, and was reduced even further in the animals with both areas ablated. The lesions in the subfornical organ were sufficient to reduce the thirst induced by caval ligation. The lesions in both areas inhibit water intake induced by caval ligation. Water intake induced by deprivation was reduced when both areas were destroyed. These findings demonstrate that both the lateral preoptic area and the subfornical organ are necessary for normal drinking in response to cellular dehydration, hypovolemia, and hypotension. There is further evidence that the lateral preoptic area and subfornical organ interact in the control of water intake induced by a variety of thirst challenges.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise can have deleterious effects on the secretion of salivary immunoglobulin A (s-IgA), which appears to be related to perturbations in sympatheticoadrenal activation (Teeuw et al., 2004). Caffeine, commonly used for its ergogenic properties is associated with increased sympathetic nervous system activity, and it has been previously shown that caffeine ingestion before intensive cycling enhances s-IgA responses during exercise (Bishop et al., 2006). Therefore, the aim of the present study was to examine the effect of a performance cereal bar, containing caffeine, before and during prolonged exhaustive cycling on exercise performance and the salivary secretion of IgA, alpha-amylase activity and cortisol. Using a randomised cross-over design and following a 10 – 12 hour overnight fast, 12 trained cyclists, mean (SEM) age: 21(1) yr; height: 179(2) cm; body mass: 73.6(2.5) kg; maximal oxygen uptake, VO2max: 57.9(1.2) completed 2.5 h of cycling at 60%VO2max (with regular water ingestion) on a stationary ergometer, which was followed by a ride to exhaustion at 75% VO2max. Immediately before exercise, and after 55 min and 115 min of exercise participants ingested a 0.9 MJ cereal bar containing 45 g carbohydrate, 5 g protein, 3 g fat and 100 mg of caffeine (CAF) or an isocaloric noncaffeine bar (PLA). Unstimulated timed saliva samples were collected immediately before exercise, after 70 min and 130 min of exercise, and immediately after the exhaustive exercise bout. Saliva was analysed for s-IgA, alpha-amylase activity and cortisol concentration. Saliva flow rates were determined to calculate the s-IgA secretion rate. Data were analysed using a 2-way repeated measures ANOVA and post-hoc t-tests with Holm Bonferroni adjustments applied where appropriate. Time to exhaustion was 35% longer in CAF compared with PLA ((2177 (0.2) vs 1615 (0.16) s; P < 0.05)). Saliva flow rate did not change significantly during the exercise protocol. Exercise was associated with elevations in s-IgA concentration (9% increase), s-IgA secretion rate (24% increase) and alpha-amylase activity (224% increase) post-exhaustion (P < 0.01), but there was no effect of CAF on these responses. Salivary cortisol concentration increased by 64% post-exhaustion in the CAF trial only (P < 0.05), indicating an increase in adrenal activity following caffeine ingestion. Values were 35.7 (5.5) and 19.6 (3.4) nmol/L post-exhaustion for CAF and PLA, respectively. These findings show that ingestion of a caffeine containing cereal bar during prolonged exhaustive cycling enhances endurance performance, increases salivary cortisol secretion post-exhaustion, but does not affect the exercise-induced increases in s-IgA or alpha-amylase activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The specific arginine(8)-vasopressin (AVP) V, receptors antagonist (AAVP) was injected (20, 40 and 80 nmol) into the lateral septal area (LSA) to determine the effects of selective septal V, receptor on water and 3% sodium intake in rats. Was also observed the effects of losartan and CGP42112A (select ligands of the AT(1) and AT(2) ANG II receptors, respectively) injected into LSA prior AVP on the same appetites. Twenty-four hours before the experiments, the rats were deprived of water. The volume of drug solution injected was 0.5 mul. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2,0 h. Injection of AVP reduced the water and sodium ingestion vs. control (0.15 M saline). Pre-treatment with AAVP (40, 80 and 160 nmol) did not alter the decrease in the water ingestion induced by AVP, whereas AAVP abolished the action of AVP-induced sodium intake. Losartan (40, 80 and 160 nmol) did not alter the effect of AVP on water and sodium intake, whereas CGP42112A (20, 40 and 60 nmol) at the first 30 min increased water ingestion. Losartan and CGP42112A together increased the actions of AVP, showing more pronounced effects than when the two antagonists were injected alone. The results showed that AVP inhibited the appetites and these effects were increased by the AAVP. The involvement of angiotensinergic receptors in the effects of AVP is also suggested. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water and 3% NaCl intake were increased by the injection of 4 ng angiotensin II (ANG II) into the anteroventral third ventricle (AV3V) region of rats. Pretreatment with two specific ANG II receptor antagonists, [octanoyl-Leu8]ANG II and [Leu8]ANG II, significantly reduced ANG II-induced water and saline intake. This inhibition lasted approximately 30 min, with partial recovery at 60 min. In rats with electrolytic lesion of the bilateral ventromedial nucleus of hypothalamus (VMH), the effect of ANG II on water intake was not different from that observed in sham rats, but saline ingestion increased. In summary, the present results show that the AV3V region is an important central structure for ANG II-induced saline ingestion. Lesion of the VMH increases the response to ANG II, showing an interaction between the AV3V region and the VMH in the regulation of salt ingestion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we investigated the influence of a ventromedial hypothalamus (VMH) lesion with ibotenic acid on water and sodium intake and presser responses induced by combined treatment of the median preoptic nucleus (MnPO) with angiotensin Il (ANG II) and adrenergic agonists (phenylephrine, norepinephrine, isoproterenol and clonidine). Male Holtzman rats with a stainless steel cannula implanted into the MnPO and bilateral sham (vehicle) or VMH lesions with ibotenic acid were used. The ingestion of water and sodium and mean arterial pressure (MAP) were determined in separate groups submitted to sodium depletion with the diuretic furosemide (20 mg/rat). ANG II (10 pmol) injection into the MnPO of sham-lesioned rats induced water and sodium intake and presser responses. VMH-lesion reduced ANG II-induced water intake and increased saline intake, In sham rats phenylephrine (80 nmol) into MnPO increased, whereas norepinephrine (80 nmol) and clonidine (40 nmol) reduced ANG II-induced water intake while sodium intake was reduced only by clonidine into MnPO. In VMH-lesioned rats, phenylephrine reduced, noradrenaline increased and clonidine produced no effect on ANG II-induced water intake. In lesioned rats ANG II-induced sodium intake was reduced by phenylephrine and noradrenaline, whereas clonidine produced no change. ANG II-induced presser response was reduced in VMH-lesioned rats, but the presser response combining ANG II and phenylephrine or noradrenaline in VMH-lesioned rats was bigger than sham rats. These results show that the VMH is important for the changes in water and sodium intake and cardiovascular responses induced by angiotensinergic and adrenergic activation of the MnPO. (C) 1997 Elsevier B.V. B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pollution, industrial solvents, concentrations of metals and other environmental agents are widely related to biochemicals values which are used in disease diagnosis of environmental toxicity. A rat bioassay validated for the identification of toxic effects of eutrophication revealed increased serum activities of amylase, alanine transaminase (BLT) and alkaline phosphatase (ALP) in rats that received algae, filtered water and nickel or cadmium from drinking water. Serum Cu-Zn superoxide dismutase activity decreased from its basal level of 40.8 +/- 2.3 to 26.4 U/mg protein, at 7 days of algae and at 48 hr of nickel and cadmium water ingestion. The observation that lipoperoxide concentration was not altered in rats treated with filtered water, while amylase, ALT and ALP were increased in these rats and in those treated with nickel or cadmium, indicated that pancreatic, hepatic and osteogenic lesions by eutrophication were not related to superoxide radicals, and might be due to a novel toxic environmental agent found in filtered and non-filtered algae water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blockade of central angiotensin receptors with the specific antagonist [Leu8]-ANG II abolished water ingestion and water and sodium excretion induced by infusion of angiotensin II (ANGII) into the lateral ventricle (LV) of rats. The antagonist reduced but did not suppress the salt appetite induced by ANGII infusion. Subcutaneous injection of deoxycorticosterone acetate (DOCA) caused increases in water and 3% NaCl ingestion and decreases in sodium excretion. When central ANGII infusion was combined with peripheral DOCA, the water intake was similar to that induced by ANGII alone and the ingestion of 3% NaCl was increased, whereas sodium excretion was inhibited. When ANGII was infused alone, a detailed temporal analysis of fluid and sodium balance showed a negative balance similar those saline controls that persisted throughout the experiment. Combined administration of ANGII and DOCA induce significant changes in water and sodium balance. Sodium and water maintained a positive balance through out the 8-h experiment. The data support an interaction of central ANGII and DOCA on sodium intake and water and sodium balance. © 1994.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present experiments were conducted to investigate the role of the α1-, α2- and β-adrenergic receptors of the median preoptic area (MnPO) on the water intake and urinary electrolyte excretion, elicited by central injections of angiotensin II (ANG II). Prazosin (an α1-adrenergic receptor antagonist) and yohimbine (an α2-adrenergic receptor antagonist) antagonized the water ingestion, Na +, K +, and urine excretion induced by ANG II. Administration of propranolol, a β-adrenergic receptor antagonist increased the Na +, K +, and urine excretion induced by ANG II. Previous treatment with prazosin and yohimbine reduced the pressor responses to ANG II. These results suggest that the adrenergic neurotransmission in the MnPO may actively participate in ANG II-induced dipsogenesis, natriuresis, kaliuresis, diuresis and pressor responses in a process that involves α1-, α2-, and β-adrenoceptors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] In the present study, we have investigated the effect of carbohydrate and protein hydrolysate ingestion on muscle glycogen resynthesis during 4 h of recovery from intense cycle exercise. Five volunteers were studied during recovery while they ingested, immediately after exercise, a 600-ml bolus and then every 15 min a 150-ml bolus containing 1) 1.67 g. kg body wt(-1). l(-1) of sucrose and 0.5 g. kg body wt(-1). l(-1) of a whey protein hydrolysate (CHO/protein), 2) 1.67 g. kg body wt(-1). l(-1) of sucrose (CHO), and 3) water. CHO/protein and CHO ingestion caused an increased arterial glucose concentration compared with water ingestion during 4 h of recovery. With CHO ingestion, glucose concentration was 1-1.5 mmol/l higher during the first hour of recovery compared with CHO/protein ingestion. Leg glucose uptake was initially 0.7 mmol/min with water ingestion and decreased gradually with no measurable glucose uptake observed at 3 h of recovery. Leg glucose uptake was rather constant at 0.9 mmol/min with CHO/protein and CHO ingestion, and insulin levels were stable at 70, 45, and 5 mU/l for CHO/protein, CHO, and water ingestion, respectively. Glycogen resynthesis rates were 52 +/- 7, 48 +/- 5, and 18 +/- 6 for the first 1.5 h of recovery and decreased to 30 +/- 6, 36 +/- 3, and 8 +/- 6 mmol. kg dry muscle(-1). h(-1) between 1.5 and 4 h for CHO/protein, CHO, and water ingestion, respectively. No differences could be observed between CHO/protein and CHO ingestion ingestion. It is concluded that coingestion of carbohydrate and protein, compared with ingestion of carbohydrate alone, did not increase leg glucose uptake or glycogen resynthesis rate further when carbohydrate was ingested in sufficient amounts every 15 min to induce an optimal rate of glycogen resynthesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rapid water ingestion improves orthostatic intolerance (OI) in multiple system atrophy (MSA) and postural tachycardia syndrome (PoTS). We compared haemodynamic changes after water and clear soup intake, the latter being a common treatment strategy for OI in daily practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New experimental work is reported on the effects of water ingestion on the performance of an axial flow compressor. The background to the work is the effect that heavy rain has on an aeroengine compressor when operating in a "descent idle" mode, i.e., when the compressor is operating at part speed and when the aeromechanical effects of water ingestion are more important than the thermodynamic effects. Most of our existing knowledge in this field comes from whole engine tests. The current work provides the first known results from direct measurements on a stand-alone compressor. The influence of droplet size on path trajectory is considered both computationally and experimentally to show that most rain droplets will collide with the first row of rotor blades. The water on the blades is then centrifuged toward the casing where the normal airflow patterns in the vicinity of the rotor tips are disrupted. The result of this disruption is a reduction in compressor delivery pressure and an increase in the torque required to keep the compressor speed constant. Both effects reduce the efficiency of the machine. The behavior of the water in the blade rows is examined in detail, and simple models are proposed to explain the loss of pressure rise and the increase in torque. The measurements were obtained in a low speed compressor, making it possible to study the mechanical (increase in torque) and aerodynamic (reduction in pressure rise) effects of water ingestion without the added complication of thermodynamic effects. Copyright © 2008 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The identification of beverages that promote longer- term fluid retention and maintenance of fluid balance is of real clinical and practical benefit in situations in which free access to fluids is limited or when frequent breaks for urination are not desirable. The postingestion diuretic response is likely to be influenced by several beverage characteristics, including the volume ingested, energy den- sity, electrolyte content, and the presence of diuretic agents. Objective: This study investigated the effects of 13 different com- monly consumed drinks on urine output and fluid balance when ingested in a euhydrated state, with a view to establishing a beverage hydration index (BHI), i.e., the volume of urine produced after drinking expressed relative to a standard treatment (still water) for each beverage. Design: Each subject (n = 72, euhydrated and fasted male subjects) ingested 1 L still water or 1 of 3 other commercially available beverages over a period of 30 min. Urine output was then collected for the subsequent 4 h. The BHI was corrected for the water content of drinks and was calculated as the amount of water retained at 2 h after ingestion relative to that observed after the ingestion of still water. Results: Total urine masses (mean 6 SD) over 4 h were smaller than the still-water control (1337 6 330 g) after an oral rehydration solution (ORS) (1038 6 333 g, P , 0.001), full-fat milk (1052 6 267 g, P , 0.001), and skimmed milk (1049 6 334 g, P , 0.001). Cumulative urine output at 4 h after ingestion of cola, diet cola, hot tea, iced tea, coffee, lager, orange juice, sparkling water, and a sports drink were not different from the response to water ingestion. The mean BHI at 2 h was 1.54 6 0.74 for the ORS, 1.50 6 0.58 for full- fat milk, and 1.58 6 0.60 for skimmed milk. Conclusions: BHI may be a useful measure to identify the short- term hydration potential of different beverages when ingested in a euhydrated state.