985 resultados para waste heat
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Alfa Laval Aalborg Oy designs and manufactures waste heat recovery systems utilizing extended surfaces. The waste heat recovery boiler considered in this thesis is a water-tube boiler where exhaust gas is used as the convective heat transfer medium and water or steam flowing inside the tubes is subject to cross-flow. This thesis aims to contribute to the design of waste heat recovery boiler unit by developing a numerical model of the H-type finned tube bundle currently used by Alfa Laval Aalborg Oy to evaluate the gas-side heat transfer performance. The main objective is to identify weaknesses and potential areas of development in the current H-type finned tube design. In addition, numerical simulations for a total of 15 cases with varying geometric parameters are conducted to investigate the heat transfer and pressure drop performance dependent on H-type fin geometry. The investigated geometric parameters include fin width and height, fin spacing, and fin thickness. Comparison between single and double tube type configuration is also conducted. Based on the simulation results, the local heat transfer and flow behaviour of the H-type finned tube is presented including boundary layer development between the fins, the formation of recirculation zone behind the tubes, and the local variations of flow velocity and temperature within the tube bundle and on the fin surface. Moreover, an evaluation of the effects of various fin parameters on heat transfer and pressure drop performance of H-type finned tube bundle has been provided. It was concluded that from the studied parameters fin spacing and fin width had the most significant effect on tube bundle performance and the effect of fin thickness was the least important. Furthermore, the results suggested that the heat transfer performance would increase due to enhanced turbulence if the current double tube configuration is replaced with single tube configuration, but further investigation and experimental measurements are required in order to validate the results.
Resumo:
The new thermoelectric material BiOCuTe exhibits an electrical conductivity of 224 S cm-1 and a Seebeck coefficient of +186 μV K-1 at 373 K, together with an extremely low lattice thermal conductivity of ∼ 0.5 W m-1 K-1. This results in a ZT of 0.42 at 373 K, which increases to 0.66 at the maximum temperature investigated, 673 K.
Resumo:
Hot rolling process is heat input process. The heat energy in hot rolled steel coils can be utilized. At SSAB Strip Product Borlänge when the hot rolled steel coils came out of the hot rolling mill they are at the temperature range of 500°C to 800°C. Heat energy contained by the one hot rolled steel coil is about 1981Kwh whereas the total heat energy for the year 2008 is 230 GWh/year.The potential of heat is too much but the heat dissipation rate is too slow. Different factors on which heat dissipation rate depends are discussed.Three suggestions are proposed to collect the waste heat from hot rolled steel coils.The 2nd proposal in which water basin is suggested would help not only to collect the waste heat but to decrease in the cooling time.
Resumo:
The performance of microchannel heat exchangers was assessed in gas-to-liquid applications in the order of several tens of kWth . The technology is suitable for exhaust heat recovery systems based on organic Rankine cycle. In order to design a light and compact microchannel heat exchanger, an optimization process is developed. The model employed in the procedure is validated through computational fluid-dynamics analysis with commercial software. It is shown that conjugate effects have a significant impact on the heat transfer performance of the device.
Resumo:
Typical internal combustion engines lose about 75% of the fuel energy through the engine coolant, exhaust and surface radiation. Most of the heat generated comes from converting the chemical energy in the fuel to mechanical energy and in turn thermal energy is produced. In general, the thermal energy is unutilized and thus wasted. This report describes the analysis of a novel waste heat recovery (WHR) system that operates on a Rankine cycle. This novel WHR system consists of a second piston within the existing piston to reduce losses associated with compression and exhaust strokes in a four-cycle engine. The wasted thermal energy recovered from the coolant and exhaust systems generate a high temperature and high pressure working fluid which is used to power the modified piston assembly. Cycle simulation shows that a large, stationary natural gas spark ignition engine produces enough waste heat to operate the novel WHR system. With the use of this system, the stationary gas compression ignition engine running at 900 RPM and full load had a net increase of 177.03 kW (240.7 HP). This increase in power improved the brake fuel conversion efficiency by 4.53%.
Resumo:
This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery system. It has been predicted by the U.S. Energy Information Administration that the transportation sector in the United States will consume approximately 15 million barrels per day in liquid fuels by the year 2025. The proposed coolant-based waste heat recovery technique has the potential to reduce the yearly usage of those liquid fuels by nearly 50 million barrels by only recovering even a modest 1% of the wasted energy within the coolant system. The proposed waste heat recovery technique implements thermoelectric generators on the outside cylinder walls of an internal combustion engine. For this research, one outside cylinder wall of a twin cylinder 26 horsepower water-cooled gasoline engine will be implemented with a thermoelectric generator surrogate material. The vertical location of these TEG surrogates along the water jacket will be varied along with the TEG surrogate thermal conductivity. The aim of this proposed dissertation is to attain empirical evidence of the impact, including energy distribution and cylinder wall temperatures, of installing TEGs in the water jacket area. The results can be used for future research on larger engines and will also assist with proper TEG selection to maximize energy recovery efficiencies.
Resumo:
"A report on a conference at Zion, Illinois, which was supported by the Research Applications Directorate of the National Science Foundations, grant GI-30971".
Resumo:
The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.
Resumo:
The United States transportation industry is predicted to consume approximately 13 million barrels of liquid fuel per day by 2025. If one percent of the fuel energy were salvaged through waste heat recovery, there would be a reduction of 130 thousand barrels of liquid fuel per day. This dissertation focuses on automotive waste heat recovery techniques with an emphasis on two novel techniques. The first technique investigated was a combination coolant and exhaust-based Rankine cycle system, which utilized a patented piston-in-piston engine technology. The research scope included a simulation of the maximum mass flow rate of steam (700 K and 5.5 MPa) from two heat exchangers, the potential power generation from the secondary piston steam chambers, and the resulting steam quality within the steam chamber. The secondary piston chamber provided supplemental steam power strokes during the engine's compression and exhaust strokes to reduce the pumping work of the engine. A Class-8 diesel engine, operating at 1,500 RPM at full load, had a maximum increase in the brake fuel conversion efficiency of 3.1%. The second technique investigated the implementation of thermoelectric generators on the outer cylinder walls of a liquid-cooled internal combustion engine. The research scope focused on the energy generation, fuel energy distribution, and cylinder wall temperatures. The analysis was conducted over a range of engine speeds and loads in a two cylinder, 19.4 kW, liquid-cooled, spark-ignition engine. The cylinder wall temperatures increased by 17% to 44% which correlated well to the 4.3% to 9.5% decrease in coolant heat transfer. Only 23.3% to 28.2% of the heat transfer to the coolant was transferred through the TEG and TEG surrogate material. The gross indicated work decreased by 0.4% to 1.0%. The exhaust gas energy decreased by 0.8% to 5.9%. Due to coolant contamination, the TEG output was not able to be obtained. TEG output was predicted from cylinder wall temperatures and manufacturer documentation, which was less than 0.1% of the cumulative heat release. Higher TEG conversion efficiencies, combined with greater control of heat transfer paths, would be needed to improve energy output and make this a viable waste heat recovery technique.
Resumo:
This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.
Resumo:
A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter
Resumo:
Heat recovery devices are important in the optimization of thermal systems, since they can be used to reduce thermal losses to the environment. The use of heat pipes in these types of equipment can provide heat recoveries of higher efficiency, since both fluid flows are external and there are less contamination risks between the hot and cold fluids. The objective of this work is to study a heat recovery unit constructed with heat pipes and mainly, to analyze the influence of the inclination of the heat pipes on the performance of the equipment. For this analysis, a heat recovery unit was constructed which possesses 48 finned heat pipes in triangular geometry, the evaporator and condenser being of the same length. This unit was tested in an air-air system simulating a heat recovery process in which heat was supplied to the hot fluid by electrical resistances. The results have shown that there exists an inclination at which the system has a better performance, but for higher inclinations there is no significant increase of the efficiency of the system. This paper also presents the influence of inclination of heat pipes on effectiveness and NTU parameters which are important in heat exchanger design.
Resumo:
The increase in environmental and healthy concerns, combined with the possibility to exploit waste as a valuable energy resource, has led to explore alternative methods for waste final disposal. In this context, the energy conversion of Municipal Solid Waste (MSW) in Waste-To-Energy (WTE) power plant is increasing throughout Europe, both in terms of plants number and capacity, furthered by legislative directives. Due to the heterogeneous nature of waste, some differences with respect to a conventional fossil fuel power plant have to be considered in the energy conversion process. In fact, as a consequence of the well-known corrosion problems, the thermodynamic efficiency of WTE power plants typically ranging in the interval 25% ÷ 30%. The new Waste Framework Directive 2008/98/EC promotes production of energy from waste introducing an energy efficiency criteria (the so-called “R1 formula”) to evaluate plant recovery status. The aim of the Directive is to drive WTE facilities to maximize energy recovery and utilization of waste heat, in order to substitute energy produced with conventional fossil fuels fired power plants. This calls for novel approaches and possibilities to maximize the conversion of MSW into energy. In particular, the idea of an integrated configuration made up of a WTE and a Gas Turbine (GT) originates, driven by the desire to eliminate or, at least, mitigate limitations affecting the WTE conversion process bounding the thermodynamic efficiency of the cycle. The aim of this Ph.D thesis is to investigate, from a thermodynamic point of view, the integrated WTE-GT system sharing the steam cycle, sharing the flue gas paths or combining both ways. The carried out analysis investigates and defines the logic governing plants match in terms of steam production and steam turbine power output as function of the thermal powers introduced.
Resumo:
In a pilot project an optimized mobile latent heat storage based on a system available on the market has been tested at Fraunhofer Institute for Environmental, Safety and Energy Technology. Initially trials were conducted with the aim of optimizing the process of charging and discharging. A specifically constructed test rig at the incineration trials centre at the institute allowed charging and discharging procedures of the mobile latent heat storage with adjustable parameters. In addition an evaluation model was constructed to further optimize the heat exchanger systems. In conclusion the prototype of the mobile latent heat storage was tested in practical operation. The economic and technical feasibility of heat transportation was shown if not utilized waste heat is available. © 2014 The Authors.