993 resultados para volumetric water content
Resumo:
The determination of volumetric water content of soils is an important factor in irrigation management. Among the indirect methods for estimating, the time-domain reflectometry (TDR) technique has received a significant attention. Like any other technique, it has advantages and disadvantages, but its greatest disadvantage is the need of calibration and high cost of acquisition. The main goal of this study was to establish a calibration model for the TDR equipment, Trase System Model 6050X1, to estimate the volumetric water content in a Distroferric Red Latosol. The calibration was carried out in a laboratory with disturbed soil samples under study, packed in PVC columns of a volume of 0.0078m³. The TDR probes were handcrafted with three rods and 0.20m long. They were vertically installed in soil columns, with a total of five probes per column and sixteen columns. The weightings were carried out in a digital scale, while daily readings of dielectric constant were obtained in TDR equipment. The linear model θν = 0.0103 Ka + 0.1900 to estimate the studied volumetric water content showed an excellent coefficient of determination (0.93), enabling the use of probes in indirect estimation of soil moisture.
Resumo:
Existe una creciente necesidad de hacer el mejor uso del agua para regadío. Una alternativa eficiente consiste en la monitorización del contenido volumétrico de agua (θ), utilizando sensores de humedad. A pesar de existir una gran diversidad de sensores y tecnologías disponibles, actualmente ninguna de ellas permite obtener medidas distribuidas en perfiles verticales de un metro y en escalas laterales de 0.1-1,000 m. En este sentido, es necesario buscar tecnologías alternativas que sirvan de puente entre las medidas puntuales y las escalas intermedias. Esta tesis doctoral se basa en el uso de Fibra Óptica (FO) con sistema de medida de temperatura distribuida (DTS), una tecnología alternativa de reciente creación que ha levantado gran expectación en las últimas dos décadas. Específicamente utilizamos el método de fibra calentada, en inglés Actively Heated Fiber Optic (AHFO), en la cual los cables de Fibra Óptica se utilizan como sondas de calor mediante la aplicación de corriente eléctrica a través de la camisa de acero inoxidable, o de un conductor eléctrico simétricamente posicionado, envuelto, alrededor del haz de fibra óptica. El uso de fibra calentada se basa en la utilización de la teoría de los pulsos de calor, en inglés Heated Pulsed Theory (HPP), por la cual el conductor se aproxima a una fuente de calor lineal e infinitesimal que introduce calor en el suelo. Mediante el análisis del tiempo de ocurrencia y magnitud de la respuesta térmica ante un pulso de calor, es posible estimar algunas propiedades específicas del suelo, tales como el contenido de humedad, calor específico (C) y conductividad térmica. Estos parámetros pueden ser estimados utilizando un sensor de temperatura adyacente a la sonda de calor [método simple, en inglés single heated pulsed probes (SHPP)], ó a una distancia radial r [método doble, en inglés dual heated pulsed probes (DHPP)]. Esta tesis doctoral pretende probar la idoneidad de los sistemas de fibra óptica calentada para la aplicación de la teoría clásica de sondas calentadas. Para ello, se desarrollarán dos sistemas FO-DTS. El primero se sitúa en un campo agrícola de La Nava de Arévalo (Ávila, España), en el cual se aplica la teoría SHPP para estimar θ. El segundo sistema se desarrolla en laboratorio y emplea la teoría DHPP para medir tanto θ como C. La teoría SHPP puede ser implementada con fibra óptica calentada para obtener medidas distribuidas de θ, mediante la utilización de sistemas FO-DTS y el uso de curvas de calibración específicas para cada suelo. Sin embargo, la mayoría de aplicaciones AHFO se han desarrollado exclusivamente en laboratorio utilizando medios porosos homogéneos. En esta tesis se utiliza el programa Hydrus 2D/3D para definir tales curvas de calibración. El modelo propuesto es validado en un segmento de cable enterrado en una instalación de fibra óptica y es capaz de predecir la respuesta térmica del suelo en puntos concretos de la instalación una vez que las propiedades físicas y térmicas de éste son definidas. La exactitud de la metodología para predecir θ frente a medidas puntuales tomadas con sensores de humedad comerciales fue de 0.001 a 0.022 m3 m-3 La implementación de la teoría DHPP con AHFO para medir C y θ suponen una oportunidad sin precedentes para aplicaciones medioambientales. En esta tesis se emplean diferentes combinaciones de cables y fuentes emisoras de calor, que se colocan en paralelo y utilizan un rango variado de espaciamientos, todo ello en el laboratorio. La amplitud de la señal y el tiempo de llegada se han observado como funciones del calor específico del suelo. Medidas de C, utilizando esta metodología y ante un rango variado de contenidos de humedad, sugirieron la idoneidad del método, aunque también se observaron importantes errores en contenidos bajos de humedad de hasta un 22%. La mejora del método requerirá otros modelos más precisos que tengan en cuenta el diámetro del cable, así como la posible influencia térmica del mismo. ABSTRACT There is an increasing need to make the most efficient use of water for irrigation. A good approach to make irrigation as efficient as possible is to monitor soil water content (θ) using soil moisture sensors. Although, there is a broad range of different sensors and technologies, currently, none of them can practically and accurately provide vertical and lateral moisture profiles spanning 0-1 m depth and 0.1-1,000 m lateral scales. In this regard, further research to fulfill the intermediate scale and to bridge single-point measurement with the broaden scales is still needed. This dissertation is based on the use of Fiber Optics with Distributed Temperature Sensing (FO-DTS), a novel approach which has been receiving growing interest in the last two decades. Specifically, we employ the so called Actively Heated Fiber Optic (AHFO) method, in which FO cables are employed as heat probe conductors by applying electricity to the stainless steel armoring jacket or an added conductor symmetrically positioned (wrapped) about the FO cable. AHFO is based on the classic Heated Pulsed Theory (HPP) which usually employs a heat probe conductor that approximates to an infinite line heat source which injects heat into the soil. Observation of the timing and magnitude of the thermal response to the energy input provide enough information to derive certain specific soil thermal characteristics such as the soil heat capacity, soil thermal conductivity or soil water content. These parameters can be estimated by capturing the soil thermal response (using a thermal sensor) adjacent to the heat source (the heating and the thermal sources are mounted together in the so called single heated pulsed probe (SHPP)), or separated at a certain distance, r (dual heated pulsed method (DHPP) This dissertation aims to test the feasibility of heated fiber optics to implement the HPP theory. Specifically, we focus on measuring soil water content (θ) and soil heat capacity (C) by employing two types of FO-DTS systems. The first one is located in an agricultural field in La Nava de Arévalo (Ávila, Spain) and employ the SHPP theory to estimate θ. The second one is developed in the laboratory using the procedures described in the DHPP theory, and focuses on estimating both C and θ. The SHPP theory can be implemented with actively heated fiber optics (AHFO) to obtain distributed measurements of soil water content (θ) by using reported soil thermal responses in Distributed Temperature Sensing (DTS) and with a soil-specific calibration relationship. However, most reported AHFO applications have been calibrated under laboratory homogeneous soil conditions, while inexpensive efficient calibration procedures useful in heterogeneous soils are lacking. In this PhD thesis, we employ the Hydrus 2D/3D code to define these soil-specific calibration curves. The model is then validated at a selected FO transect of the DTS installation. The model was able to predict the soil thermal response at specific locations of the fiber optic cable once the surrounding soil hydraulic and thermal properties were known. Results using electromagnetic moisture sensors at the same specific locations demonstrate the feasibility of the model to detect θ within an accuracy of 0.001 to 0.022 m3 m-3. Implementation of the Dual Heated Pulsed Probe (DPHP) theory for measurement of volumetric heat capacity (C) and water content (θ) with Distributed Temperature Sensing (DTS) heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring. We test the method using different combinations of FO cables and heat sources at a range of spacings in a laboratory setting. The amplitude and phase-shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity (referred, here, to as Cs). Estimations of Cs at a range of θ suggest feasibility via responsiveness to the changes in θ (we observed a linear relationship in all FO combinations), though observed bias with decreasing soil water contents (up to 22%) was also reported. Optimization will require further models to account for the finite radius and thermal influence of the FO cables, employed here as “needle probes”. Also, consideration of the range of soil conditions and cable spacing and jacket configurations, suggested here to be valuable subjects of further study and development.
Resumo:
In the Salgesch forest in the Canton of Valais in Switzerland, the understory has been removed to test whether effects on pine tree vitality. The data set published here compromises 120 time series of 60 soil temperature and 60 volumetric water content (VWC) sensors (EC-TM and 5-TM) (Decagon Devices, WA, USA) at three soil depth levels (5, 30, 60 cm) employed in the direct vicinity of six control trees and six trees with the undergrowth removed. At the levels 5 and 60 cm, three replications were made whereas 4 replications were made at level 30 cm. Six loggers recorded hourly data since 2010 with 18% gaps or 11% when not considering winter months December, January and February. The figure attached to this repository shows the average VWC and temperature of all measurements within the same depth and treatment specific setting aggregated in a defined time interval and period. In addition to that, the standard deviations are plotted as transparent polygons. In case of insufficient values for calculating standard deviations, the setting specific mean standard deviation of the considered time period are inserted.
Resumo:
Volumetric soil water content (theta) can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR) technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon) and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav) were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR), and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.
Resumo:
The first feasibility study of using dual-probe heated fiber optics with distributed temperature sensing to measure soil volumetric heat capacity and soil water content is presented. Although results using different combinations of cables demonstrate feasibility, further work is needed to gain accuracy, including a model to account for the finite dimension and the thermal influence of the probes. Implementation of the dual-probe heat-pulse (DPHP) approach for measurement of volumetric heat capacity (C) and water content (θ) with distributed temperature sensing heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring (e.g., simultaneous measurement at thousands of points). We applied uniform heat pulses along a FO cable and monitored the thermal response at adjacent cables. We tested the DPHP method in the laboratory using multiple FO cables at a range of spacings. The amplitude and phase shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity. Estimations of C at a range of moisture contents (θ = 0.09– 0.34 m3 m−3) suggest the feasibility of measurement via responsiveness to the changes in θ, although we observed error with decreasing soil water contents (up to 26% at θ = 0.09 m3 m−3). Optimization will require further models to account for the finite radius and thermal influence of the FO cables. Although the results indicate that the method shows great promise, further study is needed to quantify the effects of soil type, cable spacing, and jacket configurations on accuracy.
Resumo:
Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.
Resumo:
Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the "Brown and Francis" mass-size relationship is used. The comparisons spanned radar reflectivity values from -15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m(-3), and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration "intercept parameter" rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over Southern England. It is found that the model predicted mean I WC to within 10% of the observations at temperatures between -30 degrees and - 10 degrees C but tended to underestimate it by around a factor of 2 at colder temperatures.
Resumo:
A water desaturation zone develops around a tunnel in water-saturated rock when the evaporative water loss at the rock surface is larger than the water flow from the surrounding saturated region of restricted permeability. We describe the methods with which such water desaturation processes in rock materials can be quantified. The water retention characteristic theta(psi) of crystalline rock samples was determined with a pressure membrane apparatus. The negative water potential, identical to the capillary pressure, psi, below the tensiometric range (psi < -0.1 MPa) can be measured with thermocouple psychrometers (TP), and the volumetric water contents, theta, by means of time domain reflectometry (TDR). These standard methods were adapted for measuring the water status in a macroscopically unfissured granodiorite with a total porosity of approximately 0.01. The measured water retention curve of granodiorite samples from the Grimsel test site (central Switzerland) exhibits a shape which is typical for bimodal pore size distributions. The measured bimodality is probably an artifact of a large surface ratio of solid/voids. The thermocouples were installed without a metallic screen using the cavity drilled into the granodiorite as a measuring chamber. The water potentials observed in a cylindrical granodiorite monolith ranged between -0.1 and -3.0 MPa; those near the wall in a ventilated tunnel between -0.1 and -2.2 MPa. Two types of three-rod TDR Probes were used, one as a depth probe inserted into the rock, the other as a surface probe using three copper stripes attached to the surface for detecting water content changes in the rock-to-air boundary. The TDR signal was smoothed with a low-pass filter, and the signal length determined based on the first derivative of the trace. Despite the low porosity of crystalline rock these standard methods are applicable to describe the unsaturated zone in solid rock and may also be used in other consolidated materials such as concrete.
Resumo:
In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)-cropland-shrubland or shrubland-grassland (bunge needlegrass)-cropland-grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
Dormancy release in seeds of Lolium rigidum Gaud. (annual ryegrass) was investigated in relation to temperature and seed water content. Freshly matured seeds were collected from cropping fields at Wongan Hills and Merredin, Western Australia. Seeds from Wongan Hills were equilibrated to water contents between 6 and 18% dry weight and after-ripened at constant temperatures between 9 and 50degreesC for up to 23 weeks. Wongan Hills and Merredin seeds at water contents between 7 and 17% were also after-ripened in full sun or shade conditions. Dormancy was tested at regular intervals during after-ripening by germinating seeds on agar at 12-h alternating 15degreesC (dark) and 25degreesC (light) periods. Rate of dormancy release for Wongan Hills seeds was a positive linear function of after-ripening temperature above a base temperature (T-b) of 5.4degreesC. A thermal after-ripening time model for dormancy loss accounting for seed moisture in the range 6-18% was developed using germination data for Wongan Hills seeds after-ripened at constant temperatures. The model accurately predicted dormancy release for Wongan Hills seeds after-ripened under naturally fluctuating temperatures. Seeds from Merredin responded similarly but had lower dormancy at collection and a faster rate of dormancy release in seeds below 9% water content.
Resumo:
The assumption in analytical solutions for flow from surface and buried point sources of an average water content, (θ) over bar, behind the wetting front is examined. Some recent work has shown that this assumption fitted some field data well. Here we calculated (θ) over bar using a steady state solution based on the work by Raats [1971] and an exponential dependence of the diffusivity upon the water content. This is compared with a constant value of (θ) over bar calculated from an assumption of a hydraulic conductivity at the wetting front of 1 mm day(-1) and the water content at saturation. This comparison was made for a wide range of soils. The constant (θ) over bar generally underestimated (θ) over bar at small wetted radii and overestimated (θ) over bar at large radii. The crossover point between under and overestimation changed with both soil properties and flow rate. The largest variance occurred for coarser texture soils at low-flow rates. At high-flow rates in finer-textured soils the use of a constant (θ) over bar results in underestimation of the time for the wetting front to reach a particular radius. The value of (θ) over bar is related to the time at which the wetting front reaches a given radius. In coarse-textured soils the use of a constant value of (θ) over bar can result in an error of the time when the wetting front reaches a particular radius, as large as 80% at low-flow rates and large radii.
Resumo:
The current models are not simple enough to allow a quick estimation of the remediation time. This work reports the development of an easy and relatively rapid procedure for the forecasting of the remediation time using vapour extraction. Sandy soils contaminated with cyclohexane and prepared with different water contents were studied. The remediation times estimated through the mathematical fitting of experimental results were compared with those of real soils. The main objectives were: (i) to predict, through a simple mathematical fitting, the remediation time of soils with water contents different from those used in the experiments; (ii) to analyse the influence of soil water content on the: (ii1) remediation time; (ii2) remediation efficiency; and (ii3) distribution of contaminants in the different phases present into the soil matrix after the remediation process. For sandy soils with negligible contents of clay and natural organic matter, artificially contaminated with cyclohexane before vapour extraction, it was concluded that (i) if the soil water content belonged to the range considered in the experiments with the prepared soils, then the remediation time of real soils of similar characteristics could be successfully predicted, with relative differences not higher than 10%, through a simple mathematical fitting of experimental results; (ii) increasing soil water content from 0% to 6% had the following consequences: (ii1) increased remediation time (1.8–4.9 h, respectively); (ii2) decreased remediation efficiency (99–97%, respectively); and (ii3) decreased the amount of contaminant adsorbed onto the soil and in the non-aqueous liquid phase, thus increasing the amount of contaminant in the aqueous and gaseous phases.