1000 resultados para virtual displacement
Resumo:
Neste trabalho abordamos a questão concernente à origem do princípio de trabalho virtual e sua consolidação como um dos conceitos fundamentais no estudo da mecânica analítica e, em particular, dos sistemas em equilíbrio estático. Ênfase foi dada às contribuições seminais de Stevin, Galileu e, sobretudo, as de d'Alembert e Lagrange, no tocante ao conceito de trabalho virtual. Além disso, faz-se um comentário geral sobre vínculos holônomos e deslocamento virtual. Alguns exemplos de emprego da equação de d'Alembert-Lagrange são apresentados, para mostrar como o princípio de trabalho virtual pode ser adequadamente aplicado.
Resumo:
A higher-order theory of laminated composites under in-plane loads is developed. The displacement field is expanded in terms of the thickness co-ordinate, satisfying the zero shear stress condition at the surfaces of the laminate. Using the principle of virtual displacement, the governing equations and boundary conditions are established. Numerical results for interlaminar stresses arising in the case of symmetric laminates under uniform extension have been obtained and are compared with similar results available in the literature.
Resumo:
Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, K-I and K-II, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.
Resumo:
A new numerical procedure is proposed to investigate cracking behaviors induced by mismatch between the matrix phase and aggregates due to matrix shrinkage in cement-based composites. This kind of failure processes is simplified in this investigation as a purely spontaneous mechanical problem, therefore, one main difficulty during simulating the phenomenon lies that no explicit external load serves as the drive to propel development of this physical process. As a result, it is different from classical mechanical problems and seems hard to be solved by using directly the classical finite element method (FEM), a typical kind of "load -> medium -> response" procedures. As a solution, the actual mismatch deformation field is decomposed into two virtual fields, both of which can be obtained by the classical FEM. Then the actual response is obtained by adding together the two virtual displacement fields based on the principle of superposition. Then, critical elements are detected successively by the event-by-event technique. The micro-structure of composites is implemented by employing the generalized beam (GB) lattice model. Numerical examples are given to show the effectiveness of the method, and detailed discussions are conducted on influences of material properties.
Resumo:
A key to success in many sports stems from the ability to anticipate what a player is going to do next. In sporting duels such as a 1 vs. 1 in rugby, the attacker can try and beat the defender by using deceptive movement. Those strategies involve an evolution of the centre of mass (COM) in the medio-lateral plane, from a minimal state to maximal displacement just before the final reorientation. The aim of this work is to consider this displacement as a motion-gap, as outlined in Tau theory, as a potential variable that may specify deceptive movement and as a means of comparing anticipatory performance between mid-level players and novices in rugby. Using a virtual reality set-up, 8 mid-level rugby players (ML) and 8 novices (NOV) observed deceptive (DM) and non-deceptive movements (NDM). The global framework used an occlusion time paradigm with four occlusion times. Participants had to judge the final direction of the attacker after the different cuts-off. For each movement and at each occlusion time, we coupled the ability to predict the good final direction with the value of the COM displacement in the medio-lateral (COM M/L) plane or with the Tau of this parameter (Tau COM). Firstly, results show that the Tau COM is a more predictive optical variable than the simple COM M/L. Secondly, this optical variable Tau COM is used by both groups, and finally, with a specific methodology we showed that mid-level players have significantly better anticipatory ability than the novice group.
Resumo:
To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD) could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling), while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau) coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.
Resumo:
By using simulation methods, we studied the adsorption of binary CO2-CH4 mixtures on various CH4 preadsorbed carbonaceous materials (e.g., triply periodic carbon minimal surfaces, slit-shaped carbon micropores, and Harris's virtual porous carbons) at 293 K. Regardless of the different micropore geometry, two-stage mechanism of CH4 displacement from carbon nanospaces by coadsorbed CO2 has been proposed. In the first stage, the coadsorbed CO2 molecules induced the enhancement of CH4 adsorbed amount. In the second stage, the stronger affinity of CO2 to flat/curved graphitic surfaces as well as CO2-CO2 interactions cause the displacement of CH4 molecules from carbonaceous materials. The operating conditions of CO2-induced cleaning of the adsorbed phase from CH4 mixture component strongly depend on the size of the carbon micropores, but, in general, the enhanced adsorption field in narrow carbon ultramicropores facilitates the nonreactive displacement of CH4 by coadsorbed CO2. This is because in narrow carbon ultramicropores the equilibrium CO2/CH4 selectivity (i.e., preferential adsorption toward CO2) increased significantly. The adsorption field in wider micropores (i.e., the overall surface energy) for both CO2 and CH4 is very similar, which decreases the preferential CO2 adsorption. This suppresses the displacement of CH4 by coadsorbed CO2 and assists further adsorption of CH4 from the bulk mixture (i.e., CO2/CH4 mixing in adsorbed phase).
Resumo:
This paper investigates the effectiveness of virtual product placement as a marketing tool by examining the relationship between brand recall and recognition and virtual product placement. It also aims to address a gap in the existing academic literature by focusing on the impact of product placement on recall and recognition of new brands. The growing importance of product placement is discussed and a review of previous research on product placement and virtual product placement is provided. The research methodology used to study the recall and recognition effects of virtual product placement are described and key findings presented. Finally, implications are discussed and recommendations for future research provided.