1000 resultados para virtual observatory
Resumo:
Sha implementat un servei VO (Virtual Observatori) a les instal lacions del Telescopi TFRM, que permet distribuir les imatges preses amb el telescopi de manera remota i automtica a qualsevol usuari del servei. El servei est format per un arxiu dimatges, una aplicaci que integra les imatges a l'arxiu y una aplicaci que es comunica amb els clients dVO, rebent peticions i responen segons sespecifica al protocol SIAP (Simple Image Access Protocol).
Resumo:
We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14 <= r <= 21 (85.2%) and r >= 19 (82.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT, and Ball et al. We find that our FT classifier is comparable to or better in completeness over the full magnitude range 15 <= r <= 21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (> 80%) while simultaneously achieving low contamination (similar to 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 <= r <= 21.
Resumo:
There is a growing need for massive computational resources for the analysis of new astronomical datasets. To tackle this problem, we present here our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, AstroGrid) and the computa- tional grid (e.g. TeraGrid, COSMOS etc.). We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of compu- tational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We discuss our planned usages of the VOTechBroker in computing a huge number of npoint correlation functions from the SDSS data and mas- sive model-fitting of millions of CMBfast models to WMAP data. We also discuss other applications including the determination of the XMM Cluster Survey selection function and the construction of new WMAP maps.
Resumo:
We outline our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, Astro- Grid) and the computational grid. We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We present our planned usage of the VOTechBroker in computing a huge number of npoint correlation functions from the SDSS, as well as fitting over a million CMBfast models to the WMAP data.
Resumo:
The size and complexity of data sets generated within ecosystem-level programmes merits their capture, curation, storage and analysis, synthesis and visualisation using Big Data approaches. This review looks at previous attempts to organise and analyse such data through the International Biological Programme and draws on the mistakes made and the lessons learned for effective Big Data approaches to current Research Councils United Kingdom (RCUK) ecosystem-level programmes, using Biodiversity and Ecosystem Service Sustainability (BESS) and Environmental Virtual Observatory Pilot (EVOp) as exemplars. The challenges raised by such data are identified, explored and suggestions are made for the two major issues of extending analyses across different spatio-temporal scales and for the effective integration of quantitative and qualitative data.
Resumo:
Context. We report the infrared identification of the X-ray source 2XMM J191043.4+091629.4, which was detected by XMM-Newton/EPIC in the vicinity of the Galactic supernova remnant W49B. Aims. The aim of this work is to establish the nature of the X-ray source 2XMM J191043.4+091629.4 studying both the infrared photometry and spectroscopy of the companion. Methods. We analysed UKIDSS images around the best position of the X-ray source and obtained spectra of the best candidate using NICS in the Telescopio Nazionale Galileo (TNG) 3.5-m telescope. We present photometric and spectroscopic TNG analyses of the infrared counterpart of the X-ray source, identifying emission lines in the K-band. The H-band spectra does not present any significant feature. Results. We have shown that the Brackett H i at 2.165 m, and He i at 2.184 m and at 2.058 m are significantly present in the infrared spectrum. The CO bands are also absent from our spectrum. Based on these results and the X-ray characteristics of the source, we conclude that the infrared counterpart is an early B-type supergiant star with an E(B V) = 7.6 0.3 at a distance of 16.0 0.5 kpc. This would be, therefore, the first high-mass X-ray binary in the Outer Arm at galactic longitudes of between 30 and 60.
Resumo:
Context. Several clusters of red supergiants have been discovered in a small region of the Milky Way close to the base of the Scutum-Crux Arm and the tip of the Long Bar. Population synthesis models indicate that they must be very massive to harbour so many supergiants. Amongst these clusters, Stephenson 2, with a core grouping of 26 red supergiants, is a strong candidate to be the most massive young cluster in the Galaxy. Aims. Stephenson 2 is located close to a region where a strong over-density of red supergiants had been found. We explore the actual cluster size and its possible connection to this over-density. Methods. Taking advantage of Virtual Observatory tools, we have performed a cross-match between the DENIS, USNO-B1 and 2MASS catalogues to identify candidate obscured luminous red stars around Stephenson 2, and in a control nearby region. More than 600 infrared bright stars fulfill our colour criteria, with the vast majority having a counterpart in the I band and >400 being sufficiently bright in I to allow observation with a 4-m class telescope. We observed a subsample of ~250 stars, using the multi-object, wide-field, fibre spectrograph AF2 on the WHT telescope in La Palma, obtaining intermediate-resolution spectroscopy in the 75009000 range. We derived spectral types and luminosity classes for all these objects and measured their radial velocities. Results. Our targets turned out to be G and K supergiants, late ( M4) M giants, and M-type bright giants (luminosity class II) and supergiants. We found ~35 red supergiants with radial velocities similar to Stephenson 2 members, spread over the two areas surveyed. In addition, we found ~40 red supergiants with radial velocities incompatible in principle with a physical association. Conclusions. Our results show that Stephenson 2 is not an isolated cluster, but part of a huge structure likely containing hundreds of red supergiants, with radial velocities compatible with the terminal velocity at this Galactic longitude (and a distance ~6 kpc). In addition, we found evidence of several populations of massive stars at different distances along this line of sight.
Resumo:
The new Australian Computational Earth Systems Simulator research facility provides a virtual laboratory for studying the solid earth and its complex system behavior. The facility's capabilities complement those developed by overseas groups, thereby creating the infrastructure for an international computational solid earth research virtual observatory.
Resumo:
To foster ongoing international cooperation beyond ACES (APEC Cooperation for Earthquake Simulation) on the simulation of solid earth phenomena, agreement was reached to work towards establishment of a frontier international research institute for simulating the solid earth: iSERVO = International Solid Earth Research Virtual Observatory institute (http://www.iservo.edu.au). This paper outlines a key Australian contribution towards the iSERVO institute seed project, this is the construction of: (1) a typical intraplate fault system model using practical fault system data of South Australia (i.e., SA interacting fault model), which includes data management and editing, geometrical modeling and mesh generation; and (2) a finite-element based software tool, which is built on our long-term and ongoing effort to develop the R-minimum strategy based finite-element computational algorithm and software tool for modelling three-dimensional nonlinear frictional contact behavior between multiple deformable bodies with the arbitrarily-shaped contact element strategy. A numerical simulation of the SA fault system is carried out using this software tool to demonstrate its capability and our efforts towards seeding the iSERVO Institute.
Resumo:
ACM Computing Classification System (1998): J.2.
Resumo:
ACM Computing Classification System (1998): J.2.
Resumo:
ACM Computing Classification System (1998): J.2.
Resumo:
In order to investigate the spatial and temporal variability (daily, seasonal and inter-annual) of CO2 and O2 air-sea fluxes and their underlying processes, a dense network of observations is required. For this purpose, the Cape Verde Ocean Observatory (CVOO) provides a unique infrastructure. Information thus obtained also links biological productivity and atmospheric composition. To expand these capabilities, a novel virtual mooring approach for high resolution measurements, based on a modified NEMO profiling float, is pursued. This Profiling Float was equipped with O2 and pCO2 sensors for the first time, in order to collect daily depth profiles (0-200 m) in the vicinity of the ocean site. Data access and remote control is provided through Iridium satellite telemetry. Recalibrations and redeployments are carried out every 1-3 month. First, we present the new developed instrument and the innovative in situ and real-time approach behind. Second, we show the inter-disciplinary scientific objectives which will benefit from this approach as a result of the intensive partnership between IFM-GEOMAR and INDP during the last years.