964 resultados para video surveillance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Having a good automatic anomalous human behaviour detection is one of the goals of smart surveillance systems’ domain of research. The automatic detection addresses several human factor issues underlying the existing surveillance systems. To create such a detection system, contextual information needs to be considered. This is because context is required in order to correctly understand human behaviour. Unfortunately, the use of contextual information is still limited in the automatic anomalous human behaviour detection approaches. This paper proposes a context space model which has two benefits: (a) It provides guidelines for the system designers to select information which can be used to describe context; (b)It enables a system to distinguish between different contexts. A comparative analysis is conducted between a context-based system which employs the proposed context space model and a system which is implemented based on one of the existing approaches. The comparison is applied on a scenario constructed using video clips from CAVIAR dataset. The results show that the context-based system outperforms the other system. This is because the context space model allows the system to considering knowledge learned from the relevant context only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the idea and demonstrates an early prototype of a novel method of interacting with security surveillance footage using natural user interfaces in place of traditional mouse and keyboard interaction. Current surveillance monitoring stations and systems provide the user with a vast array of video feeds from multiple locations on a video wall, relying on the user’s ability to distinguish locations of the live feeds from experience or list based key-value pair of location and camera IDs. During an incident, this current method of interaction may cause the user to spend increased amounts time obtaining situational and location awareness, which is counter-productive. The system proposed in this paper demonstrates how a multi-touch screen and natural interaction can enable the surveillance monitoring station users to quickly identify the location of a security camera and efficiently respond to an incident.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by human visual cognition mechanism, this paper first presents a scene classification method based on an improved standard model feature. Compared with state-of-the-art efforts in scene classification, the newly proposed method is more robust, more selective, and of lower complexity. These advantages are demonstrated by two sets of experiments on both our own database and standard public ones. Furthermore, occlusion and disorder problems in scene classification in video surveillance are also first studied in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new event recognition framework, based on the Dempster-Shafer theory of evidence, which combines the evidence from multiple atomic events detected by low-level computer vision analytics. The proposed framework employs evidential network modelling of composite events. This approach can effectively handle the uncertainty of the detected events, whilst inferring high-level events that have semantic meaning with high degrees of belief. Our scheme has been comprehensively evaluated against various scenarios that simulate passenger behaviour on public transport platforms such as buses and trains. The average accuracy rate of our method is 81% in comparison to 76% by a standard rule-based method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new framework for multi-subject event inference in surveillance video, where measurements produced by low-level vision analytics usually are noisy, incomplete or incorrect. Our goal is to infer the composite events undertaken by each subject from noise observations. To achieve this, we consider the temporal characteristics of event relations and propose a method to correctly associate the detected events with individual subjects. The Dempster–Shafer (DS) theory of belief functions is used to infer events of interest from the results of our vision analytics and to measure conflicts occurring during the event association. Our system is evaluated against a number of videos that present passenger behaviours on a public transport platform namely buses at different levels of complexity. The experimental results demonstrate that by reasoning with spatio-temporal correlations, the proposed method achieves a satisfying performance when associating atomic events and recognising composite events involving multiple subjects in dynamic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a forward-looking infrared (FLIR) video surveillance system is presented for collision avoidance of moving ships to bridge piers. An image pre-processing algorithm is proposed to reduce clutter noises by multi-scale fractal analysis, in which the blanket method is used for fractal feature computation. Then, the moving ship detection algorithm is developed from image differentials of the fractal feature in the region of surveillance between regularly interval frames. Experimental results have shown that the approach is feasible and effective. It has achieved real-time and reliable alert to avoid collisions of moving ships to bridge piers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new generation of advanced surveillance systems is being conceived as a collection of multi-sensor components such as video, audio and mobile robots interacting in a cooperating manner to enhance situation awareness capabilities to assist surveillance personnel. The prominent issues that these systems face are: the improvement of existing intelligent video surveillance systems, the inclusion of wireless networks, the use of low power sensors, the design architecture, the communication between different components, the fusion of data emerging from different type of sensors, the location of personnel (providers and consumers) and the scalability of the system. This paper focuses on the aspects pertaining to real-time distributed architecture and scalability. For example, to meet real-time requirements, these systems need to process data streams in concurrent environments, designed by taking into account scheduling and synchronisation. The paper proposes a framework for the design of visual surveillance systems based on components derived from the principles of Real Time Networks/Data Oriented Requirements Implementation Scheme (RTN/DORIS). It also proposes the implementation of these components using the well-known middleware technology Common Object Request Broker Architecture (CORBA). Results using this architecture for video surveillance are presented through an implemented prototype.