810 resultados para video modality
Resumo:
Visual noise insensitivity is important to audio visual speech recognition (AVSR). Visual noise can take on a number of forms such as varying frame rate, occlusion, lighting or speaker variabilities. The use of a high dimensional secondary classifier on the word likelihood scores from both the audio and video modalities is investigated for the purposes of adaptive fusion. Preliminary results are presented demonstrating performance above the catastrophic fusion boundary for our confidence measure irrespective of the type of visual noise presented to it. Our experiments were restricted to small vocabulary applications.
Resumo:
We present a multimodal detection and tracking algorithm for sensors composed of a camera mounted between two microphones. Target localization is performed on color-based change detection in the video modality and on time difference of arrival (TDOA) estimation between the two microphones in the audio modality. The TDOA is computed by multiband generalized cross correlation (GCC) analysis. The estimated directions of arrival are then postprocessed using a Riccati Kalman filter. The visual and audio estimates are finally integrated, at the likelihood level, into a particle filter (PF) that uses a zero-order motion model, and a weighted probabilistic data association (WPDA) scheme. We demonstrate that the Kalman filtering (KF) improves the accuracy of the audio source localization and that the WPDA helps to enhance the tracking performance of sensor fusion in reverberant scenarios. The combination of multiband GCC, KF, and WPDA within the particle filtering framework improves the performance of the algorithm in noisy scenarios. We also show how the proposed audiovisual tracker summarizes the observed scene by generating metadata that can be transmitted to other network nodes instead of transmitting the raw images and can be used for very low bit rate communication. Moreover, the generated metadata can also be used to detect and monitor events of interest.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
The solutions proposed in this thesis contribute to improve gait recognition performance in practical scenarios that further enable the adoption of gait recognition into real world security and forensic applications that require identifying humans at a distance. Pioneering work has been conducted on frontal gait recognition using depth images to allow gait to be integrated with biometric walkthrough portals. The effects of gait challenging conditions including clothing, carrying goods, and viewpoint have been explored. Enhanced approaches are proposed on segmentation, feature extraction, feature optimisation and classification elements, and state-of-the-art recognition performance has been achieved. A frontal depth gait database has been developed and made available to the research community for further investigation. Solutions are explored in 2D and 3D domains using multiple images sources, and both domain-specific and independent modality gait features are proposed.
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
This paper presents the maximum weighted stream posterior (MWSP) model as a robust and efficient stream integration method for audio-visual speech recognition in environments, where the audio or video streams may be subjected to unknown and time-varying corruption. A significant advantage of MWSP is that it does not require any specific measurements of the signal in either stream to calculate appropriate stream weights during recognition, and as such it is modality-independent. This also means that MWSP complements and can be used alongside many of the other approaches that have been proposed in the literature for this problem. For evaluation we used the large XM2VTS database for speaker-independent audio-visual speech recognition. The extensive tests include both clean and corrupted utterances with corruption added in either/both the video and audio streams using a variety of types (e.g., MPEG-4 video compression) and levels of noise. The experiments show that this approach gives excellent performance in comparison to another well-known dynamic stream weighting approach and also compared to any fixed-weighted integration approach in both clean conditions or when noise is added to either stream. Furthermore, our experiments show that the MWSP approach dynamically selects suitable integration weights on a frame-by-frame basis according to the level of noise in the streams and also according to the naturally fluctuating relative reliability of the modalities even in clean conditions. The MWSP approach is shown to maintain robust recognition performance in all tested conditions, while requiring no prior knowledge about the type or level of noise.
Resumo:
In the last years there was an exponential growth in the offering of Web-enabled distance courses and in the number of enrolments in corporate and higher education using this modality. However, the lack of efficient mechanisms that assures user authentication in this sort of environment, in the system login as well as throughout his session, has been pointed out as a serious deficiency. Some studies have been led about possible biometric applications for web authentication. However, password based authentication still prevails. With the popularization of biometric enabled devices and resultant fall of prices for the collection of biometric traits, biometrics is reconsidered as a secure remote authentication form for web applications. In this work, the face recognition accuracy, captured on-line by a webcam in Internet environment, is investigated, simulating the natural interaction of a person in the context of a distance course environment. Partial results show that this technique can be successfully applied to confirm the presence of users throughout the course attendance in an educational distance course. An efficient client/server architecture is also proposed. © 2009 Springer Berlin Heidelberg.
Resumo:
This paper proposes a rank aggregation framework for video multimodal geocoding. Textual and visual descriptions associated with videos are used to define ranked lists. These ranked lists are later combined, and the resulting ranked list is used to define appropriate locations for videos. An architecture that implements the proposed framework is designed. In this architecture, there are specific modules for each modality (e.g, textual and visual) that can be developed and evolved independently. Another component is a data fusion module responsible for combining seamlessly the ranked lists defined for each modality. We have validated the proposed framework in the context of the MediaEval 2012 Placing Task, whose objective is to automatically assign geographical coordinates to videos. Obtained results show how our multimodal approach improves the geocoding results when compared to methods that rely on a single modality (either textual or visual descriptors). We also show that the proposed multimodal approach yields comparable results to the best submissions to the Placing Task in 2012 using no extra information besides the available development/training data. Another contribution of this work is related to the proposal of a new effectiveness evaluation measure. The proposed measure is based on distance scores that summarize how effective a designed/tested approach is, considering its overall result for a test dataset. © 2013 Springer Science+Business Media New York.
Resumo:
Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.