681 resultados para vibrations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, the study of pedestrian-induced vibration on footbridges has been undertaken since the early 1990s, for concrete and steel footbridges. However, there are no recorded studies of this kind for timber footbridges. Brazilian code ABNT NBR 7190 (1997) gives design requirements only for static loads in the case of timber footbridges, without considering the serviceability limit state from pedestrian-induced vibrations. The aim of this work is to perform a theoretical dynamic, numerical and experimental analysis on simply-supported timber footbridges, by using a small-scale model developed from a 24 m span and 2 m width timber footbridge, with two main timber beams. Span and width were scaled down (1:4) to 6 m e 0.5 in, respectively. Among the conclusions reached herein, it is emphasized that the Euler-Bernoulli beam theory is suitable for calculating the vertical and lateral first natural frequencies in simply-supported timber footbridges; however, special attention should be given to the evaluation of lateral bending stiffness, as it leads to conservative values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < omega < 100 cm(-1)) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (similar to 19 angstrom) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604533]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a number of numerical simulations of the transverse vibrations of two (or one) imbalanced rotors forced by an electric motor with limited power supply, during the passage through of the two resonance zones (increasing and decreasing input voltages). The predominant presence of the Sommerfeld effect. when the rotational velocity of the motor is captured, in the second resonance frequency is demonstrated. We have shown that the hysteretic jump phenomenon exists in a rotor system with two (or one) disks, and with this, we have shown that a torque is influenced by the dynamical behavior of die rotor [DOI: 10.1115/1.3007979]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bees generate thoracic vibrations with their indirect flight muscles in various behavioural contexts. The main frequency component of non-flight vibrations, during which the wings are usually folded over the abdomen, is higher than that of thoracic vibrations that drive the wing movements for flight. So far, this has been concluded from an increase in natural frequency of the oscillating system in association with the wing adduction. In the present study, we measured the thoracic oscillations in stingless bees during stationary flight and during two types of non-flight behaviour, annoyance buzzing and forager communication, using laser vibrometry. As expected, the flight vibrations met all tested assumptions for resonant oscillations: slow build-up and decay of amplitude; increased frequency following reduction of the inertial load; and decreased frequency following an increase of the mass of the oscillating system. Resonances, however, do not play a significant role in the generation of non-flight vibrations. The strong decrease in main frequency at the end of the pulses indicates that these were driven at a frequency higher than the natural frequency of the system. Despite significant differences regarding the main frequency components and their oscillation amplitudes, the mechanism of generation is apparently similar in annoyance buzzing and forager vibrations. Both types of non-flight vibration induced oscillations of the wings and the legs in a similar way. Since these body parts transform thoracic oscillations into airborne sounds and substrate vibrations, annoyance buzzing can also be used to study mechanisms of signal generation and transmission potentially relevant in forager communication under controlled conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. In order to acquire and study the signals an experimental setup is implemented. The signals are treated through signal processing tools such as the fast Fourier transform and the short time Fourier transform. The results show that the Fourier spectrum of several signals presents a non integer behavior. The experimental study provides valuable results that can assist in the design of a control system to deal with the unwanted effects of vibrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. In more details, cantilever dynamic response, expressed in terms of vertical displacement, is extended to account for elastic foundation and then two cantilever solutions, corresponding to beams clamped on left and right hand side, with different value of Winkler constant are connected together by continuity conditions. The internal forces, as the unknowns, can be introduced by the same values in both clamped beam solutions and solved. Assumption about time variation of internal forces at the section of discontinuity must be adopted and originally analytical solution will have to include numerical procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High speed trains, when crossing regions with abrupt changes in vertical stiffness of the track and/or subsoil, may generate excessive ground and track vibrations. There is an urgent need for specific analyses of this problem so as to allow reliable esimates of vibration amplitude. Full understanding of these phenomena will lead to new construction solutions and mitigation of undesirable features. In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. Results are expressed in terms of vertical displacement. Sensitivity analysis of the response amplitude is also performed. The analytical expressions presented herein, to the authors’ knowledge, have not been published yet. Although related to one-dimensional cases, they can give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehicle- rail interaction cannot be omitted. Results and conclusions are confirmed using general purpose commercial software ANSYS. In conclusion, this work contributes to a better understanding of the additional vibration phenomenon due to vertical stiffness variation, permitting better control of the train velocity and optimization of the track design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transversal vibrations induced by a load moving uniformly along an infinite beam resting on a piece-wise homogeneous visco-elastic foundation are studied. Special attention is paid to the additional vibrations, conventionally referred to as transition radiations, which arise as the point load traverses the place of foundation discontinuity. The governing equations of the problem are solved by the normalmode analysis. The solution is expressed in a form of infinite sum of orthogonal natural modes multiplied by the generalized coordinate of displacement. The natural frequencies are obtained numerically exploiting the concept of the global dynamic stiffness matrix. This ensures that the frequencies obtained are exact. The methodology has restrictions neither on velocity nor on damping. The approach looks simple, though, the numerical expression of the results is not straightforward. A general procedure for numerical implementation is presented and verified. To illustrate the utility of the methodology parametric optimization is presented and influence of the load mass is studied. The results obtained have direct application in analysis of railway track vibrations induced by high-speed trains when passing regions with significantly different foundation stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported in this thesis addresses the research question of when and how positive psychological states impact positive behavior and positive organizational development. We present two theoretical essays and three empirical studies to find possible answers to this question and we use a multitude of methodologies with different epistemological assumptions, including quantitative correlation analysis, social network analysis and qualitative grounded theory analysis. In the whole, our work shows that positive psychological states are fundamental to promote individual and organizational higher-levels of performance and well-being. It also points that the capability to induce positive psychological states in others (an “alter-positive” approach) is a powerful way to develop outstanding individuals and organizations. In a broader sense, it stresses the need to promote good vibrations as a fundamental route to create a better world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibration syndrome is an often unrecognized occupational neurovascular disease with a prevalence of more than 70% in certain high-risk occupations. Early recognition is crucial because continued exposure to vibration can lead to irreversible ischemic injury and loss of digits. Digital ischemia due to the vibration syndrome may be due to a vasospastic phenomenon, an organic microangiopathy or arterial thrombosis. Demyelinating neuropathy and carpal tunnel syndrome are often associated. Many pathophysiological mechanisms are implicated: hyperactivity of the central sympathetic nervous system, release of plasma endothelin-1 and loss of calcitonin-gene-related-peptide vasoregulation. Investigation tests, treatment and the European Community Directive for the protection of workers are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview is given on a study which showed that not only in chemical reactions but also in the favorable case of nontotally symmetric vibrations where the chemical and external potentials keep approximately constant, the generalized maximum hardness principle (GMHP) and generalized minimum polarizability principle (GMPP) may not be obeyed. A method that allows an accurate determination of the nontotally symmetric molecular distortions with more marked GMPP or anti-GMPP character through diagonalization of the polarizability Hessian matrix is introduced