969 resultados para vibrational sudden approximation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge transfer due to collisions of ground state O3+ (2s(2)2p P-2) ions with molecular hydrogen is investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method, and electronic and vibrational state-selective cross sections along with the corresponding differential cross sections are calculated for projectile energies of 100, 500, 1000 and 5000 eV/u at the orientation angles of 25 degrees,45 degrees and 89 degrees. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations were obtained with the spin-coupled valence-bond approach. The infinite order sudden approximation (IOSA) and the vibrational sudden approximation (VSA) are utilized to deal with the rotation of H-2 and the coupling between the electron and the vibration of H-2. It is found that the distribution of vibrationally resolved cross sections with the vibrational quantum number upsilon' of H-2(+) (upsilon') varies with the increment of the projectile energy; and the electronic and vibrational stateselective differential cross sections show similar behaviors: there is a highest platform within a very small scattering angle, beyond which the differential cross sections decrease as the scattering angle increases and lots of oscillating structures appear, where the scattering angle of the first structure decreases as E-P(-1/2) with the increment of the projectile energy E-P; and the structure and amplitude of the differential cross sections are sensitive to the orientation of molecule H-2, which provides a possibility to identify the orientations of molecule H-2 by the vibrational state-selective differential scattering processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we theoretically examine recent pump/probe photoemission experiments on the strongly correlated charge-density-wave insulator TaS2.We describe the general nonequilibrium many-body formulation of time-resolved photoemission in the sudden approximation, and then solve the problem using dynamical mean-field theory with the numerical renormalization group and a bare density of states calculated from density functional theory including the charge-density-wave distortion of the ion cores and spin-orbit coupling. We find a number of interesting results: (i) the bare band structure actually has more dispersion in the perpendicular direction than in the two-dimensional planes; (ii) the DMFT approach can produce upper and lower Hubbard bands that resemble those in the experiment, but the upper bands will overlap in energy with other higher energy bands; (iii) the effect of the finite width of the probe pulse is minimal on the shape of the photoemission spectra; and (iv) the quasiequilibrium approximation does not fully describe the behavior in this system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The theory for time-resolved, pump-probe, photoemission spectroscopy and other pump-probe experiments is developed. The formal development is completely general, incorporating all of the nonequilibrium effects of the pump pulse and the finite time width of the probe pulse, and including possibilities for taking into account band structure and matrix element effects, surface states, and the interaction of the photoexcited electrons with the system leading to corrections to the sudden approximation. We also illustrate the effects of windowing that arise from the finite width of the probe pulse in a simple model system by assuming the quasiequilibrium approximation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using Generalized Gradient Approximation (GGA) and meta-GGA density functional methods, structures, binding energies and harmonic vibrational frequencies for the clusters O-4(+), O-6(+), O-8(+) and O-10(+) have been calculated. The stable structures of O-4(+), O-6(+), O-8(+) and O-10(+) have point groups D-2h, D-3h, D-4h, and D-5h optimized on the quartet, sextet, octet and dectet potential energy surfaces, respectively. Rectangular (D-2h) O-4(+) has been found to be more stable compared to trans-planar (C-2h) on the quartet potential energy surface. Cyclic structure (D-3h) of CA cluster ion has been calculated to be more stable than other structures. Binding energy (B.E.) of the cyclic O-6(+) is in good agreement with experimental measurement. The zero-point corrected B.E. of O-8(+) with D4h symmetry on the octet potential energy surface and zero-point corrected B.E. of O-10(+) with D-5h symmetry on the dectet potential energy surface are also in good agreement with experimental values. The B.E. value for O-4(+) is close to the experimental value when single point energy is calculated by Brueckner coupled-cluster method, BD(T). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability of intense ultrashort laser pulses to initiate, control and image vibrational wavepacket dynamics in the deuterium molecular ion has been simulated with a view to inform and direct future femtosecond pump-control-probe experiments. The intense-field coherent control of the vibrational superposition has been studied as a function of pulse intensity and delay time, to provide an indication of key constraints for experimental studies. For selected cases of the control mechanism, probing of the subsequent vibrational wavepacket dynamics has been simulated via the photodissociation (PD) channel. Such PD probing is shown to elucidate the modified wavepacket dynamics where the position of the quantum revival is sensitive to the control process. Through Fourier transform analysis the PD yield is also shown to provide a characterisation of the vibrational distribution. It has been shown that a simple 'critical R cut-off' approximation can be used to reproduce the effect of a probe pulse interaction, providing a convenient and efficient alternative to intensive computer simulations of the PD mechanism in the deuterium molecular ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamical method for inelastic transport simulations in nanostructures is compared to a steady-state method based on nonequilibrium Green's functions. A simplified form of the dynamical method produces, in the steady state in the weak-coupling limit, effective self-energies analogous to those in the Born approximation due to electron-phonon coupling. The two methods are then compared numerically on a resonant system consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits an enhanced heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the static and dynamical methods capture local current-induced heating and inelastic corrections to the current with good agreement over a wide range of conditions, except in the limit of very high vibrational excitations where differences begin to emerge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple quantum mechanical model to describe Coulomb explosion of H-2(+) and D-2(+) by short, intense infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid when the process of dissociation prior to ionization is negligible. The results are compared with recent experimental data for the proton kinetic energy spectrum [Th. Ergler , Phys. Rev. Lett. 95, 093001 (2005); D. S. Murphy , J. Phys. B 40, S359 (2007)]. Using a Franck-Condon distribution over initial vibrational states, the theory reproduces the overall shape of the spectrum with only a small overestimation of slow protons. The agreement between theory and experiment can be made perfect by using a non-Frank-Condon initial distribution characteristic for H-2(+) (D-2(+)) targets produced by strong-field ionization of H-2 (D-2). For comparison, we also present results obtained by two different tunneling models for this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio cross section calculations for vibronic excitation using the R -matrix approach have been performed on the N 2 + molecular ion complex. A three-state close-coupling expansion is used where the electronic target states; X 2 g + , A 2 u and B 2 u + of the molecular cation are represented by a valence configuration-interaction approximation. A non-adiabatic approximation is invoked to study vibronic excitation for the first three negative bands, (0,0), (1,0) and (2,0) of the X-B transition (B 2 u + v ´ X 2 g + v ´´ ) of N 2 + . Fixed-nuclei and non-adiabatic cross section results are compared with the available experimental data for the (0,0) band and the breakdown of the adiabatic fixed-nuclei approximation is clearly evident for the vibronic excitation of the (1,0) and (2,0) bands in this molecular ion complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical set of field-induced coordinates is defined and is used to show that the vibrational degrees of freedom required to completely describe nuclear relaxation polarizabilities and hyperpolarizabilities is reduced from 3N-6 to a relatively small number. As this number does not depend upon the size of the molecule, the process provides computational advantages. A method is provided to separate anharmonic contributions from harmonic contributions as well as effective mechanical from electrical anharmonicity. The procedures are illustrated by Hartree-Fock calculations, indicating that anharmonicity can be very important

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined