988 resultados para vibration characteristics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential axial shortening in vertical members of reinforced concrete high-rise buildings occurs due to shrinkage, creep and elastic shortening, which are time dependent effects of concrete. This has to be quantified in order to make adequate provisions and mitigate its adverse effects. This paper presents a novel procedure for quantifying the axial shortening of vertical members using the variations in vibration characteristics of the structure, in lieu of using gauges which can pose problems in use during and after the construction. This procedure is based on the changes in the modal flexiblity matrix which is expressed as a function of the mode shapes and the reciprocal of the natural frequencies. This paper will present the development of this novel procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlling differential axial shortening in vertical load bearing concrete elements is a major concern for new generation tall buildings with complex geometries and mechanisms. Quantification of axial shortening using gauges to verify the pre-estimated numerical values used at the design stage is a well established method. This method makes adequate provision to mitigate the adverse effects during the construction. However, this method is becoming increasingly unusable due to its drawbacks. This highlights the need a novel method to quantify the axial shortening using ambient measurements. This paper will first brief introduce the method and then illustrate its application to a high-rise building with two outrigger and belt systems. Moreover, this procedure can be used as a health or performance monitoring tool of the building structure, both during and after construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vibration characteristics of structural members are significantly influenced by the axial loads and hence axial deformation of the member. Numerous methods have been developed to quantify the axial loads in individual structural members using their natural frequencies. However, the findings of these methods cannot be applied to individual members in a structural framing system as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses the modal flexibility parameter to quantify axial deformations in load bearing elements of structural framing systems. The proposed method is illustrated through examples and results highlight that the method can be used to quantify the axial deformations of Individual elements of structural framing systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic computer simulation techniques are used to develop and apply a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage localisation in beams and plates. Numerically simulated modal data obtained through finite element analyses are used to develop algorithms based on changes of modal flexibility and modal strain energy before and after damage and used as the indices for assessment of the state of structural health. The proposed procedure is illustrated through its application to flexural members under different damage scenarios and the results confirm its feasibility for damage assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axial deformations resulting from in-plane loads (axial forces) of plate elements impact significantly on their vibration characteristics. Although, numerous methods have been developed to quantify axial forces and hence deformations of individual plate elements with different boundary conditions based on their natural frequencies, these methods are unable to apply to the plate elements in a structural system. This is because the natural frequency is a global parameter for the entire structure. Thus, this paper proposes a comprehensive vibration based procedure to quantify axial deformations of plate elements in a structural framing system. Unique capabilities of the proposed method present through illustrative examples. Keywords- Plate Elements, Dynamic Stiffness Matrix, Finite Element Method, Vibration Characteristics, Axial Deformation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the outcome of investigations and studies of the vibratioon characteristics and response of low frequency structural systems for a composite concrete steel floor plate and a reverse profiled cable tensioned foot bridge. These highly dynamic and slender structure are the engineering response to planning, aesthetic and environmental influences, but are prone to excessive and complex vibration. A number of design codes and practice guides provided information to engineers for vibration mitigation However, they are limited to very simple load function applied to a few uncoupled translational modes of excitation. Motivated by the need to address the knowledge gaps in this area, the investigations described in this paper focused on synchronous multi-modal and coupled excitation of the floor plate and footbridge with considerations for torsinal effects. The results showed the potential for adverse dynamic response from multi-modal and coupled excitation influenced by patterned loading, structure geometry, stiffness distribution, directional effects, forcing functions based on activity frequency and duration of foot contact, and modal participation. It was also shown that higher harmonics of the load frequency can excite higher modes in the composite floor structure. Such responsive behaviour is prevalent mainly in slender and lightweight construction and not in stiffer and heavier structural systems. The analytical techniques and methods used in these investigations can supplement the current limited code and best practice provisions for mitigating the impact of human induced vibrations in slender structural systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Column elements at a certain level in building are subjected to loads from different tributary areas. Consequently, differential axial deformation among these elements occurs. Adverse effects of differential axial deformation increase with building height and geometric complexity. Vibrating wire, electronic strain and external mechanical strain gauges are used to measure the axial deformations to take adequate provisions to mitigate the adverse effects. These gauges require deploying in or on the elements during their construction in order to acquire necessary measurements continuously. The use of these gauges is therefore inconvenient and uneconomical. This highlights the need for a method to quantify the axial deformation using ambient measurements. This paper proposes a comprehensive vibration based method. The unique capabilities of the proposed method present through an illustrative example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plate elements are used in many engineering applications. In-plane loads and deformations have significant influence on the vibration characteristics of plate elements. Numerous methods have been developed to quantify the effects of in-plane loads and deformations of individual plate elements with different boundary conditions based on their natural frequencies. However, these developments cannot be applied to the plate elements in a structural system as the natural frequency is a global parameter for the entire structure. This highlights the need for a method to quantify in-plane deformations of plate elements in structural framing systems. Motivated by this gap in knowledge, this research has developed a comprehensive vibration based procedure to quantify in-plane deformation of plate elements in a structural framing system. This procedure with its unique capabilities to capture the influence of load migration, boundary conditions and different tributary areas is presented herein and illustrated through examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the vibration characteristics of a concrete-steel composite multi-panel floor structure; the use of these structures is becoming more common. These structures have many desirable properties but are prone to excessive and complex vibration, which is not currently well understood. Existing design codes and practice guides provide generic advice or simple techniques that cannot address the complex vibration in these types of low-frequency structures. The results of this study show the potential for an adverse dynamic response from higher and multi-modal excitation influenced by human-induced pattern loading, structural geometry, and activity frequency. Higher harmonics of the load frequency are able to excite higher modes in the composite floor structure in addition to its fundamental mode. The analytical techniques used in this paper can supplement the current limited code and practice guide provisions for mitigating the impact of human-induced vibrations in these floor structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Columns and walls in buildings are subjected to a number of load increments during the construction and service stages. The combination of these load increments and poor quality construction can cause defects in these structural components. In addition, defects can also occur due to accidental or deliberate actions by users of the building during construction and service stages. Such defects should be detected early so that remedial measures can be taken to improve life time serviceability and performance of the building. This paper uses micro and macro model upgrading methods during construction and service stages of a building based on the mass and stiffness changes to develop a comprehensive procedure for locating and detecting defects in columns and walls of buildings. Capabilities of the procedure are illustrated through examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops and applies a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage detection in slab-on-girder bridges. The proposed procedure is first validated through experimental testing of a model bridge. Numerically simulated modal data obtained through finite element analyses are then used to evaluate the vibration parameters before and after damage and used as the indices for assessment of the state of structural health. The procedure is illustrated by its application to full scale slab-on-girder bridges under different damage scenarios involving single and multiple damages on the deck and girders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cable structures find many applications such as in power transmission, in anchors and especially in bridges. They serve as major load bearing elements in suspension bridges, which are capable of spanning long distances. All bridges, including suspension bridges, are designed to have long service lives. However, during this long life, they become vulnerable to damage due to changes in loadings, deterioration with age and random action such as impacts. The main cables are more vulnerable to corrosion and fatigue, compared to the other bridge components, and consequently reduces the serviceability and ultimate capacity of the bridge. Detecting and locating such damage at the earliest stage is challenging in the current structural health monitoring (SHM) systems of long span suspension bridges. Damage or deterioration of a structure alters its stiffness, mass and damping properties which in turn modify its vibration characteristics. This phenomenon can therefore be used to detect damage in a structure. The modal flexibility, which depends on the vibration characteristics of a structure, has been identified as a successful damage indicator in beam and plate elements, trusses and simple structures in reinforced concrete and steel. Successful application of the modal flexibility phenomenon to detect and locate the damage in suspension bridge main cables has received limited attention in recent research work. This paper, therefore examines the potential of the modal flexibility based Damage Index (DI) for detecting and locating damage in the main cable of a suspension bridge under four different damage scenarios. Towards this end, a numerical model of a suspension bridge cable was developed to extract the modal parameters at both damaged and undamaged states. Damage scenarios considered in this study with varied location and severity were simulated by changing stiffness at particular locations of the cable model. Results confirm that the DI has the potential to successfully detect and locate damage in suspension bridge main cables. This simple method can therefore enable bridge engineers and managers to detect and locate damage in suspension bridges at an early stage, minimize expensive retrofitting and prevent bridge collapse.