971 resultados para vertex re-identification attack
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
Resumo:
After first observing a person, the task of person re-identification involves recognising an individual at different locations across a network of cameras at a later time. Traditionally, this task has been performed by first extracting appearance features of an individual and then matching these features to the previous observation. However, identifying an individual based solely on appearance can be ambiguous, particularly when people wear similar clothing (i.e. people dressed in uniforms in sporting and school settings). This task is made more difficult when the resolution of the input image is small as is typically the case in multi-camera networks. To circumvent these issues, we need to use other contextual cues. In this paper, we use "group" information as our contextual feature to aid in the re-identification of a person, which is heavily motivated by the fact that people generally move together as a collective group. To encode group context, we learn a linear mapping function to assign each person to a "role" or position within the group structure. We then combine the appearance and group context cues using a weighted summation. We demonstrate how this improves performance of person re-identification in a sports environment over appearance based-features.
Resumo:
Person re-identification is particularly challenging due to significant appearance changes across separate camera views. In order to re-identify people, a representative human signature should effectively handle differences in illumination, pose and camera parameters. While general appearance-based methods are modelled in Euclidean spaces, it has been argued that some applications in image and video analysis are better modelled via non-Euclidean manifold geometry. To this end, recent approaches represent images as covariance matrices, and interpret such matrices as points on Riemannian manifolds. As direct classification on such manifolds can be difficult, in this paper we propose to represent each manifold point as a vector of similarities to class representers, via a recently introduced form of Bregman matrix divergence known as the Stein divergence. This is followed by using a discriminative mapping of similarity vectors for final classification. The use of similarity vectors is in contrast to the traditional approach of embedding manifolds into tangent spaces, which can suffer from representing the manifold structure inaccurately. Comparative evaluations on benchmark ETHZ and iLIDS datasets for the person re-identification task show that the proposed approach obtains better performance than recent techniques such as Histogram Plus Epitome, Partial Least Squares, and Symmetry-Driven Accumulation of Local Features.
Resumo:
In this paper we explore ways to address the issue of dataset bias in person re-identification by using data augmentation to increase the variability of the available datasets, and we introduce a novel data augmentation method for re-identification based on changing the image background. We show that use of data augmentation can improve the cross-dataset generalisation of convolutional network based re-identification systems, and that changing the image background yields further improvements.
Resumo:
In this paper we propose a novel recurrent neural networkarchitecture for video-based person re-identification.Given the video sequence of a person, features are extracted from each frame using a convolutional neural network that incorporates a recurrent final layer, which allows information to flow between time-steps. The features from all time steps are then combined using temporal pooling to give an overall appearance feature for the complete sequence. The convolutional network, recurrent layer, and temporal pooling layer, are jointly trained to act as a feature extractor for video-based re-identification using a Siamese network architecture.Our approach makes use of colour and optical flow information in order to capture appearance and motion information which is useful for video re-identification. Experiments are conduced on the iLIDS-VID and PRID-2011 datasets to show that this approach outperforms existing methods of video-based re-identification.
https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID
Project Source Code
Resumo:
This paper details the results of recent reanalysis of the animal remains from the 1960s excavations at Fishbourne Roman Palace, West Sussex. It argues that specimens originally identified as belonging to the great bustard are, in fact, misidentified remains of common crane. This discovery has important connotations. First, these findings need to be reported so that the avian archaeological record can be updated to avoid future syntheses of Romano-British faunal remains incorrectly including great bustard. Secondly, interpretations of the zooarchaeological remains at Fishbourne Palace will alter, due to the differing ecological histories of bustards and cranes.
Resumo:
[EN]The re-identification problem has been commonly accomplished using appearance features based on salient points and color information. In this paper, we focus on the possibilities that simple geometric features obtained from depth images captured with RGB-D cameras may offer for the task, particularly working under severe illumination conditions. The results achieved for different sets of simple geometric features extracted in a top-view setup seem to provide useful descriptors for the re-identification task, which can be integrated in an ambient intelligent environment as part of a sensor network.
Resumo:
[EN]Low cost real-time depth cameras offer new sensors for a wide field of applications apart from the gaming world. Other active research scenarios as for example surveillance, can take ad- vantage of the capabilities offered by this kind of sensors that integrate depth and visual information. In this paper, we present a system that operates in a novel application context for these devices, in troublesome scenarios where illumination conditions can suffer sudden changes. We focus on the people counting problem with re-identification and trajectory analysis.
Resumo:
[EN]Re-identi fication is commonly accomplished using appearance features based on salient points and color information. In this paper, we make an study on the use of di fferent features exclusively obtained from depth images captured with RGB-D cameras. The results achieved, using simple geometric features extracted in a top-view setup, seem to provide useful descriptors for the re-identi fication task.
Resumo:
Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance.
Resumo:
The automatic extraction of biometric descriptors of anonymous people is a challenging scenario in camera networks. This task is typically accomplished making use of visual information. Calibrated RGBD sensors make possible the extraction of point cloud information. We present a novel approach for people semantic description and re-identification using the individual point cloud information. The proposal combines the use of simple geometric features with point cloud features based on surface normals.
Resumo:
With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.