997 resultados para vertebral column


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traumatic injuries to the vertebral column, spinal cord, and cauda equina nerve roots occur frequently in human and veterinary medicine and lead to devastating consequences. Complications include partial or complete loss of motor, sensory, and visceral functions, which are among the main causes of euthanasia in dogs. The present case report describes neurological functional recovery in two dogs that were treated surgically for severe spinal fracture and vertebral luxation. In the first case, a stray, mixed breed puppy was diagnosed with thoracolumbar syndrome and Schiff-Scherrington posture, as well as a T13 caudal epiphyseal fracture with 100% luxation between vertebrae T13 and L1; despite these injuries, the animal did show deep pain sensation in the pelvic limbs. Decompression through hemilaminectomy and spinal stabilization with vertebral body pins and bone cement were performed, and the treatment was supplemented with physiotherapy and acupuncture. In the second case, a mixed breed dog was diagnosed with a vertebral fracture and severe luxation between L6 and L7 after a vehicular trauma, but maintained nociception and perineal reflex. Surgical stabilization of the spine was performed using a modified dorsal segmental fixation technique Both patients showed significant recovery of neurological function. Complete luxation of the spinal canal observed radiographically does not mean a poor prognosis, and in some cases, motor, sensory, and visceral functions all have the potential for recovery. In the first case the determining factor for good prognosis was the presence of deep pain perception, and in the second case the prognosis was determined by the presence of sensitivity and anal sphincter tone during the initial neurological examination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To compare biomechanical stiffness of cadaveric canine cervical spine constructs stabilized with bicortical stainless steel pins and polymethylmethacrylate (PMMA), monocortical stainless steel screws with PMMA, or monocortical titanium screws with PMMA. STUDY DESIGN Biomechanical cadaver study. ANIMALS Eighteen canine cervical vertebral columns (C2-C7) were collected from skeletally mature dogs (weighing 22-32 kg). METHODS Specimens were radiographed and examined by dual energy X-ray absorptiometry. Stiffness of the unaltered C4-C5 intervertebral motion unit was measured in extension, flexion and lateral bending using non-destructive 4-point bend testing. Specimens were then stabilized by (1) bicortical stainless steel pins/PMMA, (2) monocortical stainless steel screws/PMMA, or (3) monocortical titanium screws/PMMA. Mechanical testing was repeated and stiffness data from unaltered specimens and the 3 treatment groups were compared. RESULTS All 3 surgical methods significantly increased stiffness of the C4-C5 motion unit compared with the unaltered specimen (P < .001 for all treatments), but stiffness was not significantly different among the 3 fixation groups (P = .578). CONCLUSIONS In this model, monocortical screw fixation (with stainless steel or titanium screws) was biomechanically equivalent to bicortical fixation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital vertebral malformations are common in brachycephalic “screw-tailed” dog breeds such as French bulldogs, English bulldogs, Boston terriers, and Pugs. Those vertebral malformations disrupt the normal vertebral column anatomy and biomechanics, potentially leading to deformity of the vertebral column and subsequent neurological dysfunction. The initial aim of this work was to study and determine whether the congenital vertebral malformations identified in those breeds could be translated in a radiographic classification scheme used in humans to give an improved classification, with clear and well-defined terminology, with the expectation that this would facilitate future study and clinical management in the veterinary field. Therefore, two observers who were blinded to the neurologic status of the dogs classified each vertebral malformation based on the human classification scheme of McMaster and were able to translate them successfully into a new classification scheme for veterinary use. The following aim was to assess the nature and the impact of vertebral column deformity engendered by those congenital vertebral malformations in the target breeds. As no gold standard exists in veterinary medicine for the calculation of the degree of deformity, it was elected to adapt the human equivalent, termed the Cobb angle, as a potential standard reference tool for use in veterinary practice. For the validation of the Cobb angle measurement method, a computerised semi-automatic technique was used and assessed by multiple independent observers. They observed not only that Kyphosis was the most common vertebral column deformity but also that patients with such deformity were found to be more likely to suffer from neurological deficits, more especially if their Cobb angle was above 35 degrees.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. © The Author 2014.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The vertebral column and its units, the vertebrae, are fundamental features, characteristic of all vertebrates. Developmental segregation of the vertebral bodies as articulated units is an intrinsic requirement to guarantee the proper function of the spine. Whenever these units become fused either during development or postsegmentation, movement is affected in a more or less severe manner, depending on the number of vertebrae affected. Nevertheless, fusion may occur as part of regular development and as a physiological requirement, like in the tetrapod sacrum or in fish posterior vertebrae forming the urostyle. In order to meet the main objective of this PhD project, which aimed to better understand the molecular and cellular events underlying vertebral fusion under physiological and pathological conditions, a detailed characterization of the vertebral fusion occurring in zebrafish caudal fin region was conducted. This showed that fusion in the caudal fin region comprised 5 vertebral bodies, from which, only fusion between [PU1++U1] and ural2 [U2+] was still traceable during development. This involved bone deposition around the notochord sheath while fusion within the remaining vertebral bodies occur at the level of the notochord sheath, as during the early establishment of the vertebral bodies. A comparison approach between the caudal fin vertebrae and the remaining vertebral column showed conserved features such as the presence of mineralization related proteins as Osteocalcin were identified throughout the vertebral column, independently on the mineralization patterns. This unexpected presence of Osteocalcin in notochord sheath, here identified as Oc1, suggested that this gene, opposing to Oc2, generally associated with bone formation and mature osteoblast activity, is potentially associated with early mineralization events including chordacentrum formation. Nevertheless, major differences between caudal fin region and anterior vertebral bodies considering arch histology and mineralization patterns, led us to use RA as an inductive factor for vertebral fusion, allowing a direct comparison of equivalent structures under normal and fusion events. This fusion phenotype was associated with notochord sheath ectopic mineralization instead of ectopic perichordal bone formation related with increased osteoblast activity, as suggested in previous reports. Additionally, alterations in ECM content, cell adhesion and blood coagulation were discussed as potentially related with the fusion phenotype. Finally, Matrix gla protein, upregulated upon RA treatment and shown to be associated with chordacentrum mineralization sites in regular development, was further described considering its potential function in vertebral formation and pathological fusion. Therefore with this work we propose zebrafish caudal fin vertebral fusion as a potential model to study both congenital and postsegmentation fusion and we present candidate factors and genes that may be further explored in order to clarify whether we can prevent vertebral fusion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anatomical studies of the anteater (Tamandua tetradactyla) are scarce and the articles that describe the vertebral column of this species have variations in the number of thoracic and lumbar vertebrae. This study had the objective of adding data to the existing literature about the anatomical composition of an anteater's vertebral column using radiographic and tomographic exams. Based on the cadaver of a young female anteater, we observed a total of 7 cervical, 16 thoracic, 3 lumbar and 5 sacral vertebrae, which differed from the cited literature, especially with respect to the thoracic vertebrae. This demonstrates the need for studies with a larger number of individuals in order to standardize possible anatomic variations for the species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: The diagnosis of equine back disorders is challenging. Objectively determining movement of the vertebral column may therefore be of value in a clinical setting. OBJECTIVES: To establish whether surface-mounted inertial measurement units (IMUs) can be used to establish normal values for range of motion (ROM) of the vertebral column in a uniform population of horses trotting under different conditions. STUDY DESIGN: Vertebral ROM was established in Franches-Montagnes stallions and a general population of horses and the variability in measurements compared between the two groups. Repeatability and the influence of specific exercise condition (on ROM) were assessed. Finally, attempts were made to explain the findings of the study through the evaluation of factors that might influence ROM. METHODS: Dorsoventral (DV) and mediolateral (ML) vertebral ROM was measured at a trot under different exercise conditions in 27 Franches-Montagnes stallions and six general population horses using IMUs distributed over the vertebral column. RESULTS: Variability in the ROM measurements was significantly higher for general population horses than for Franches-Montagnes stallions (both DV and ML ROM). Repeatability was strong to very strong for DV measurements and moderate for ML measurements. Trotting under saddle significantly reduced the ROM, with sitting trot resulting in a significantly lower ROM than rising trot. Age is unlikely to explain the low variability in vertebral ROM recorded in the Franches-Montagnes horses, while this may be associated with conformational factors. CONCLUSIONS: It was possible to establish a normal vertebral ROM for a group of Franches-Montagnes stallions. While within-breed variation was low in this population, further studies are necessary to determine variation in vertebral ROM for other breeds and to assess their utility for diagnosis of equine back disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. STUDY DESIGN In vitro imaging and anatomic study. ANIMALS Medium-sized canine cadaver vertebral columns (n=12). METHODS Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. RESULTS Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CONCLUSIONS CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CLINICAL RELEVANCE CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Divergence of anterior-posterior (AP) limb pattern and differences in vertebral column morphology are the two main examples of mammalian evolution. The Hox genes (homeobox containing gene) have been implicated in driving evolution of these structures. However, regarding Hox genes, how they contribute to the generation of mammalian morphological diversities, is still unclear. Implementing comparative gene expression and phenotypic rescue studies for different mammalian Hox genes could aid in unraveling this mystery. In the first part of this thesis, the expression pattern of Hoxd13 gene, a key Hox gene in the establishment of the limb AP pattern, was examined in developing limbs of bats and mice. Bat forelimbs exhibit a pronounced asymmetric AP pattern and offer a good model to study the molecular mechanisms that contribute to the variety of mammalian limbs. The data showed that the expression domain of bat Hoxd13 was shifted prior to the asymmetric limb plate expansion, whereas its domain in mice was much more symmetric. This finding reveals a correlation between the divergence of Hoxd13 expression and the AP patterning difference in limb development. The second part of this thesis details a phenotypic rescue approach by human HOXB1-9 transgenes in mice with Hoxb1-9 deletion, The mouse mutants displayed homeosis in cervical and anterior thoracic vertebrae. The human transgenes entirely rescued the mouse mutants, suggesting that these human HOX genes have similar functions to their mouse orthologues in anterior axial skeletal patterning. The anterior expressing human HOXB transgenes such as HOXB1-3 were expressed in the mouse embryonic trunk in a similar manner as their murine orthologues. However, the anterior boundary of human HOXB9 expression domain was more posterior than that of the mouse Hoxb9 by 2-3 somites. These data provide the molecular support for the hypothesis that Hox genes are responsible for maintaining similar anterior axial skeletal architectures cervical and anterior thoracic regions, but different architectures in lumbar and posterior thoracic regions between humans and mice. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

En esta revisión bibliográfica, llevada a cabo a través de una búsqueda en distintas bases de datos (PubMed, SportDiscus, Scielo) así como en revistas tales como Elsevier y buscadores como Google, se busca la evidencia referente a las patologías de la columna vertebral en la infancia así como programas educativos de prevención y tratamiento y el papel que puede desempeñar la educación física en las patologías de la columna vertebral en general y de la hiperlordosis específicamente. La literatura existente debía estar comprendida entre los años 2005g2015. Como visión global de esta revisión, podríamos decir que los problemas de espalda en la niñez son muy habituales pese a producirse en menor número que en poblaciones adultas y que, actualmente, siguen considerándose como un desafío clínico debido a que, en la mayoría de las veces, vienen acompañadas de patologías más complejas. Dentro de los problemas más prevalentes se encuentran algunos como la hiperlordosis, el genu valgum, el desequilibrio entre los hombros, la inclinación pélvica lateral, la escoliosis, la rotación del tronco y la hipercifosis torácica, entre otros. Se exponen, además de los problemas más habituales de columna vertebral en la niñez, las posibles causas, diversos programas de prevención e intervención y, finalmente, se exponen la importancia que tienen la educación postural, el papel del profesor de educación física en la prevención, detección y tratamiento de dichas patologías así como el papel vital que puede desarrollar la educación física en dichos niños. ABSTRACT This literature review was carried out through a search in different databases (PubMed, SportDiscus, Scielo) as well as in magazines such as Elsevier and, finally, in Google. Evidences related to the pathologies of the spine in children as well as educational programs for the prevention and treatment were searched. The role that educational programs can play in the prevention of the spine pathologies in general and specifically in the hyperlordosis was also analyzed. Literature review period was from 2005 till 2015. Results showed that back problems in childhood are very common although the prevalence is lower than in adults. The fact that these pathologies come normally associated with other more important problems, makes spine diseases a medical challenge. Within the most prevalent problems we can find hyperlordosis, genu valgum, lateral pelvic tilt, scoliosis, trunk rotation, uneven shoulders and chest’s hipercifosis, among others. Most common problems of vertebral column in the childhood, the possible causes, different programs of prevention and intervention were also reviewed. Importance of postural education in schools as well as the figure of the physical education teacher in the prevention, detection and treatment were analyzed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oculo-auriculo-vertebral spectrum (OAVS, OMIM 164 210) is a developmental disorder primarily involving structures derived from the first and second pharyngeal arches during embryogenesis. The phenotype is clinically heterogeneous and is typically characterised by abnormal development of the ear, mandible anomalies and defects of the vertebral column. OAVS may occur as a multiple congenital abnormality, and associated findings include anomalies of the eye, brain, heart, kidneys and other organs and systems. Both genetic and environmental factors are thought to contribute to this craniofacial condition, however, the mechanisms are still poorly understood. Here, we present a review of the literature on OAVS, discussing what is known about the aetiology, candidate loci, possible mechanisms and the range of clinical features that characterise this condition. We also comment on some important aspects of recurrence risk counselling to aid clinical management.