890 resultados para ventilatory frequency
Resumo:
Perceiving a possible predator may promote physiological changes to support prey 'fight or flight'. In this case, an increase in ventilatory frequency (VF) may be expected, because this is a way to improve oxygen uptake for escape tasks. Therefore, changes in VF may be used as a behavioral tool to evaluate visual recognition of a predator threat. Thus, we tested the effects of predator visual exposure on VF in the fish Nile tilapia, Oreochromis niloticus. For this, we measured tilapia VF before and after the presentation of three stimuli: an aquarium with a harmless fish or a predator or water (control). Nile tilapia VF increased significantly in the group visually exposed to a predator compared with the other two, which were similar to each other. Hence, we conclude that Nile tilapia may recognize an allopatric predator; consequently VF is an effective tool to indicate visual recognition of predator threat in fish. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This study tested the use of ventilatory frequency (VF) as an indicator of stress in the Nile tilapia, Oreochromis niloticus (L.). Firstly, we tested the relationship between VF and plasma cortisol after confinement. Confined fish showed higher VF and plasma cortisol levels, but the latter continued to increase significantly for longer time than VF. Secondly, we conducted another experiment to test the use of VF as indicator of fish stress. In four out of six treatment, we confined the fish for different intervals (30 s, 5, 15 or 30 min). The others were used as control. In one, no handling was imposed. The other control consisted of introducing the partition (the same used to perform the confinement) into the aquarium for less than 4 s, without confinement and immediately removing the partition (partition control). Ventilatory frequency was increased for the partition control as much as for the longer duration of confinement. This clearly indicates that VF is a very sensitivity response to disturbance, but of limited use because this parameter does not reflect the severity of the stimulus. Thus, although VF is a non-invasive technique that does not require sophisticated recording equipment, its usefulness is limited. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ventilatory frequency (VF) was investigated in the fish Nile tilapia, Oreochromis niloticus, subjected to confinement, electroshock or social stressor. Fish were allowed to acclimatize to tank conditions for 10 days (1 fish/aquarium). VF baseline was determined 5 days after adjustment had been started. At the 10th day of isolation, stressor effects on VF were assessed. The stressors were imposed during 60 min: pairing with a larger resident animal (social stressor), or gentle electroshock (AC, 20 V, 15 mA, 100 Hz for 1 min every 4 min), or space restriction (confinement). VF was quantified immediately after the end of the stressor imposition. Baseline of VF was not statistically different among groups. Social stressor clearly induced VF to increase, while an increased or decreased VF can be observed for both confinement and electroshock. However, fish tend to increase their VF in response to confinement and decrease in the case of electroshock. These results suggest that VF is a sensitive behavioural indicator for distinguishing stress responses in the fish Nile tilapia among different stressors. © 2006 Elsevier GmbH. All rights reserved.
Resumo:
The alarm response to skin extract has been well documented in fish. In response to skin extract, there is a decline in both locomotion activity and aggressive interactions. Our observation herein of these responses in the cichlid Nile tilapia, Oreochromis niloticus, confirmed the existence of the alarm response in this species. However, so far there has been a paucity of information on the autonomic correlates of this response. In this study, the ventilatory change in response to the chemical alarm cue was evaluated. This parameter was measured 4 min before and 4 min after exposure to 1 mL of either conspecific skin extract or distilled water (extract vehicle). Skin extract induced an increase in the ventilation rate, which suggested an anticipatory adjustment to potentially harmful stimuli. The chemical cue (alarm substance) also interfered with the prioritisation of responses to different environmental stimuli (stimuli filtering); this was suggested by the observation that the Nile tilapia declined to fight after exposure to a cue that indicates a risk of predation. Furthermore, histological analysis of the Nile tilapia skin revealed the presence of putative alarm substance-producing (club) cells.
Resumo:
This study tested whether aggressive behaviour can predict individual variation in stress responses of Nile tilapia Oreochromis niloticus. We used a mirror test to measure tendency to aggressive behaviour, and calculated the attack frequency and time until the first attack (latency) for each fish. One day later, we measured plasma cortisol and glucose, and two days later, we measured ventilatory frequency (VF) (pre-confinement responses). Immediately after the VF measure, we subjected the same fish to 30 min confinement, followed by measurements of cortisol, glucose, and VF (post-confinement responses). We found that post-confinement stress cortisol, glucose, and VF were higher than pre-confinement responses. Attack frequency was negatively correlated with VF and latency was positively correlated with baseline glucose and VF. Thus, we conclude that attack frequency and latency to a mirror reflection could be used to predict baseline levels of physiological stress indicators in Nile tilapia.
Resumo:
We investigated the effects of environmental light colors (blue, yellow and white) on the stress responses (measured by changes in ventilatory frequency - VF) of Nile tilapia to confinement. After 7 days of light treatment, the VF was similar for fish in each color. On the 8th day, fish were confined for 15. min. After release, the post-confinement VF was measured six times (first period: 0, 2 and 4. min; second period: 6, 8 and 10. min). Irrespective of the light color treatment, confinement increased the VF to higher levels during the first post-confinement period than during the second one. When color was analyzed, irrespective of time, fish under white light increased their VF post-confinement, and blue light prevented this effect. We conclude that blue light is the preferred color for Nile tilapia in terms of reducing stress. This finding is in contrast to previous choice test studies that indicated that yellow is their preferred color. © 2012 Elsevier GmbH.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study examined the effect of glyphosate-based herbicide (Roundup Original), the major herbicide used in soybean crops in Mato Grosso state, at concentrations of 0, 2.25, 4.5, 7.5, and 15 mg L-1 on metabolic and behavior parameters of the hybrid fish surubim in an acute exposure lasting 96 h. Glycogen content, glucose, lactate, and protein levels were measured in different tissues. Plasma levels of cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were also determined. Ventilatory frequency (VF) and swimming activity (SA) were considered behavior parameters. Results showed that herbicide exposure decreased plasma glucose levels and increased it in surubim liver. Lactate increased in both plasma and liver but decreased in muscle. Protein levels decreased in plasma and muscle but increased in liver. After herbicide exposure, liver and muscle glycogen was decreased. Cholesterol levels decreased in plasma at all concentrations tested. Plasma ALT increased, and no alterations were recorded for AST levels. VF increased after glyphosate exposure (5 min) and decreased after 96 h. SA showed differences among all groups (5 min). At the end of 96 h, SA was altered by the 7.5 mg L-1 concentration. Fish used anaerobic glycolysis as indicated by generally decreased glycogen levels and decreased lactate levels in muscle but increased ones in plasma and liver. We suggest that the studied parameters could be used as indicators of herbicide toxicity in surubim and may provide extremely important information for understanding the biology of the animal and its responsiveness to external stimuli (stressors).
Resumo:
In Ostariophysan fish, the detection of the alarm substance liberated into the water as a consequence of an attack by a predator elicits an alarm reaction or anti-predatory behavior. In this study, experiments were performed to: (i) describe and quantitatively characterize the behavioral and ventilatory responses in piaucu fish (Leporinus macrocephalus), individually and as part of a school, to conspecific alarm substance (CAS) and; (ii) test the effect of acute fluoxetine treatment on alarm reaction. Histological analysis revealed the presence of club cells in the intermediate and superficial layers of the epidermis. The predominant behavioral response to CAS was freezing for fish held individually, characterized by the cessation of the swimming activity as the animal settles to a bottom corner of the aquarium. Fish exposed to CAS showed decrease in the mean ventilatory frequency (approximately 13%) relative to control. In schools, CAS elicited a biphasic response that was characterized by erratic movements followed by increased school cohesion and immobility, reflected as an increased school cohesion (65.5% vs. -5.8% for controls) and in the number of animals near the bottom of the aquarium (42.0% vs. 6.5% for controls). Animals treated with single i.p. injections of fluoxetine (10 mu g/g b.w.) did not exhibit alarm behavior following CAS stimulation. These results show that an alarm pheromone system is present in piaucu fish, evidenced by the presence of epidermal club cells and an alarm reaction induced by CAS and consequently of a chemosensory system to transmit the appropriate information to neural structures responsible for initiating anti-predator behavioral responses. In addition, fluoxetine treatment caused an anxiolytic-like effect following CAS exposure. Thus, the alarm reaction in piaucu can be a useful model for neuroethological and pharmacological studies of anxiety-related states. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Pulmonary interstitial emphysema is a common complication of mechanical ventilation in preterm babies. We report a case of severe unilateral pulmonary interstitial emphysema in a premature newborn, treated with high-frequency oscillatory ventilation, lateral decubitus positioning and selective intubation. After complete radiological resolution of the pulmonary emphysema in the left lung, the patient was studied by electrical impedance tomography and a marked reduction of ventilation was identified in the left lung despite radiological resolution of the cysts. This finding indicates that functional abnormalities may persist for longer periods after radiologic resolution of such lesions.
Resumo:
Olm MA, Kogler JE Jr, Macchione M, Shoemark A, Saldiva PH, Rodrigues JC. Primary ciliary dyskinesia: evaluation using cilia beat frequency assessment via spectral analysis of digital microscopy images. J Appl Physiol 111: 295-302, 2011. First published May 5, 2011; doi:10.1152/japplphysiol.00629.2010.-Ciliary beat frequency (CBF) measurements provide valuable information for diagnosing of primary ciliary dyskinesia (PCD). We developed a system for measuring CBF, used it in association with electron microscopy to diagnose PCD, and then analyzed characteristics of PCD patients. 1 The CBF measurement system was based on power spectra measured through digital imaging. Twenty-four patients suspected of having PCD (age 1-19 yr) were selected from a group of 75 children and adolescents with pneumopathies of unknown causes. Ten healthy, nonsmoking volunteers (age >= 17 yr) served as a control group. Nasal brush samples were collected, and CBF and electron microscopy were performed. PCD was diagnosed in 12 patients: 5 had radial spoke defects, 3 showed absent central microtubule pairs with transposition, 2 had outer dynein arm defects, 1 had a shortened outer dynein arm, and 1 had a normal ultrastructure. Previous studies have reported that the most common cilia defects are in the dynein arm. As expected, the mean CBF was higher in the control group (P < 0.001) and patients with normal ultrastructure (P < 0.002), than in those diagnosed with cilia ultrastructural defects (i.e., PCD patients). An obstructive ventilatory pattern was observed in 70% of the PCD patients who underwent pulmonary function tests. All PCD patients presented bronchial wall thickening on chest computed tomography scans. The protocol and diagnostic techniques employed allowed us to diagnose PCD in 16% of patients in this study.
Resumo:
The role of nitric oxide (NO) in the caudal NTS (cNTS) on baseline cardiovascular and respiratory parameters and on changes in respiratory frequency (fR) and cardiovascular responses to chemoreflex activation was evaluated in awake rats. Bilateral microinjections of L-NAME (200 nmoles/50 nL), a non-selective NO synthase (NOS) inhibitor, into the cNTS increased baseline arterial pressure, while microinjections of NPLA (3 pmoles/50 nL), a selective neuronal NOS (nNOS) inhibitor, did not. L-NAME or N-PLA microinjected into the cNTS reduced the increase in fR in response to chemoreflex activation but not cardiovascular responses. These data show that (a) NO produced by non-nNOS in the cNTS is involved in the baseline autonomic control and (b) NO produced by nNOS in the cNTS is involved in modulation of the increase in fR in response to chemoreflex activation but not in the cardiovascular responses. We conclude that NO produced by the neuronal and endothelial NOS play a different role in the cNTS neurons integral to autonomic and respiratory pathways. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chest clapping, vibration, and shaking were studied in 10 physiotherapists who applied these techniques on an anesthetized animal model. Hemodynamic variables (such as heart rate, blood pressure, pulmonary artery pressure, and right atrial pressure) were measured during the application of these techniques to verify claims of adverse events. In addition, expired tidal volume and peak expiratory flow rate were measured to ascertain effects of these techniques. Physiotherapists in this study applied chest clapping at a rate of 6.2 +/- 0.9 Hz, vibration at 10.5 +/- 2.3 Hz, and shaking at 6.2 +/- 2.3 Hz. With the use of these rates, esophageal pressure swings of 8.8 +/- 5.0, 0.7 +/- 0.3, and 1.4 +/- 0.7 mmHg resulted from clapping, vibration, and shaking respectively. Variability in rates and forces generated by these techniques was 80% of variance in shaking force (P = 0.003). Application of these techniques by physiotherapists was found to have no significant effects on hemodynamic and most ventilatory variables in this study. From this study, we conclude that chest clapping, vibration, and shaking 1) can be consistently performed by physiotherapists; 2) are significantly related to physiotherapists' characteristics, particularly clinical experience; and 3) caused no significant hemodynamic effects.
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is a new ventilatory mode in which ventilator settings are adjusted based on the electrical activity detected in the diaphragm (Eadi). This mode offers significant advantages in mechanical ventilation over standard pressure support (PS) modes, since ventilator input is determined directly from patient ventilatory demand. Therefore, it is expected that tidal volume (Vt) under NAVA would show better correlation with Eadi compared with PS, and exhibit greater variability due to the variability in the Eadi input to the ventilator. OBJECTIVES. To compare tidal volume variability in PS and NAVA ventilation modes, and its correlation with patient ventilatory demand (as characterized by maximum Eadi). METHODS. Acomparative study of patient-ventilator interaction was performed for 22 patients during standard PS with clinician determined ventilator settings; and NAVA, with NAVA gain set to ensure the same peak airway pressure as the total pressure obtained in PS. A 20 min continuous recording was performed in each ventilator mode. Respiratory rate, Vt, and Eadi were recorded. Tidal volume variance and Pearson correlation coefficient between Vt and Eadi were calculated for each patient. A periodogram was plotted for each ventilator mode and each patient, showing spectral power as a function of frequency to assess variability. RESULTS. Median, lower quartile and upper quartile values for Vt variance and Vt/Eadi correlation are shown in Table 1. The NAVA cohort exhibits substantially greater correlation and variance than the PS cohort. Power spectrums for Vt and Eadi are shown in Fig. 1 (PS and NAVA) for a typical patient. The enlarged section highlights how changes in Eadi are highly synchronized with NAVA ventilation, but less so for PS. CONCLUSIONS. There is greater variability in tidal volume and correlation between tidal volume and diaphragmatic electrical activity with NAVA compared to PS. These results are consistent with the improved patient-ventilator synchrony reported in the literature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)