986 resultados para venom glands
Resumo:
The present study analyzed, the influence of the treatment with juvenile hormone on the ultrastructure of Apis mellifera L. workers' venom glands. Newly emerged workers received topical application of 1 mu l of juvenile hormone diluted in hexane, in the concentration of 2 mu g/mu l. Two controls were used; one control received no treatment (group C1) and other received topical application of 1 mu l of hexane (group C2). The aspect of the glandular cells, in not treated newly emerged workers, showed that they are not yet secreting actively. Cellular modifications happened according to the worker age and to the glandular area considered. The most active phase of the gland happened from the emergence to the 14th day. At the 25th day the cells had already lost their secretory characteristic, being the distal area the first to suffer degeneration. The treatment with juvenile hormone and hexane altered the temporal sequence of the glandular cycle, forwarding the secretory cycle and degeneration of the venom gland.
Resumo:
The technique of osmium imidazol for the ultrastructural detection of lipids in the secretory cells of the venom gland of 14-days old worker bees of Apis mellifera L. demonstrated the presence of these components at various sites of the gland. These lipids were found mainly associated to the external region of the basal lamina and the microvilli, in the intercellular spaces, in the cuticle of the collecting canaliculi and in the secretion contained in the glandular lumen. Therefore, in addition to revealing the presence of lipids in the secretion, this technique also allowed us to attribute an exogenous origin to the lipids in the secretion; they are taken up from the haemolymph.
Resumo:
Biochemical studies revealed that the activity of some hydrolytic enzymes from the venom glands of honey bee Apis mellifera was higher in workers of 14 days of age than in those of 40 days. Among these enzymes, the highest activity was recorded for acid phosphatase, which was cytochemically detected throughout the length of the secretory filament and surrounding the canaliculi of the distal region of the reservoir. The acid phosphatase was considered to be a typical secretion product, since it was present in the cytoplasm as well as in the canaliculi of the secretory cells. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cytochemistry studies of the nuclei of the venom glands' cells of worker bees of Apis mellifera indicated that there is a higher activity in the young workers while there is a predominance of degenerative characteristics in the older workers. In addition, we demonstrated that there is an occurrence of differential nuclear synthetic activities between the cells of the distal and the proximal regions of the secretory filament and of the venom reservoir. Signs of a higher nuclear activity were evidenced at the distal regions of this gland in 14-day old workers, while at the more proximal regions of the venom gland of 40-day old workers we identified the most obvious signs of degeneration. Therefore, it was evident that the process of glandular degeneration begins at the distal region of the venom gland instead of beginning at the proximal region as had been established previously. In addition, characteristics of nuclear synthetic activities were noted in the cells of the proximal region of the reservoir; these cells were thought to be non-secretory.
Resumo:
The venom glands of worker ants of the species Ectatomma quadridens morphologically resemble an elongated sac or reservoir ending in a narrower portion that has the function of releasing the secretion to the exterior. Two external secretory filaments are individually inserted into the proximal portion of the gland and end inside the convoluted gland. The venom gland of workers of E. quadridens is, therefore, morphologically subdivided into four distinct portions: a) sac-shaped reservoir measuring approximately 1mm in length; b) excretory duct, proximal portion of the reservoir that joins the gland to the sting apparatus; c) convoluted gland, final portion of the external secretory filaments located inside the reservoir; and d) two secretory filaments measuring about 2 mm in length; their free extremities end blindly and are individually inserted into the reservoir wall at the proximal region of the venom gland. The histological data showed that the filaments and the convoluted gland are composed of cubic cells of secretory function. The reservoir consists of a simple cubical epithelium externally surrounded by muscle fibers. A thick cuticle internally coats the epithelium of the reservoir. The application of histochemical tests allowed us to establish that the final secretion of the venom gland of Ectatomma quadridens is of glycoproteic nature. This secretion undergoes several modifications at the secretory filaments, at the convoluted gland, and in the reservoir before reaching the excretory duct, the point at which the secretion is released in its final composition, namely the venom. Based on the differences among various Ponerinae species we propose a hypothesis suggesting a probable evolutionary process that the venom glands of members of this subfamily might have undergone.
Resumo:
The venom from Australian elapid snakes contains a complex mixture of polypeptide toxins that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Included in these toxin families are the recently described venom natriuretic peptides, which display similar structure and vasoactive functions to mammalian natriuretic peptides. This paper describes the identification and detailed comparative analysis of the cDNA transcripts coding for the mature natriuretic peptide from a total of nine Australian elapid snake species. Multiple isoforms were identified in a number of species and represent the first description of a natriuretic peptide from the venom gland for most of these snakes. Two distinct natriuretic peptide isoforms were selected from the common brown snake (Pseudonaja textilis), PtNP-a, and the mulga (Pseudechis australis), PaNP-c, for recombinant protein expression and functional analysis. Only one of these peptides, PtNP-a, displayed cGMP stimulation indicative of normal natriuretic peptide activity. Interestingly, both recombinant peptides demonstrated a dose-dependent inhibition of angiotensin converting enzyme (ACE) activity, which is predictive of the vasoactive effects of the toxin. The natriuretic peptides, however, did not possess any coagulopathic activity, nor did they inhibit or potentiate thrombin, adenosine diphosphate or arachidonic acid induced platelet aggregation. The data presented in this study represent a significant resource for understanding the role of various natriuretic peptides isoforms during the envenomation process by Australian elapid snakes. (c) 2006 Published by Elsevier Masson SAS.
Resumo:
A novel plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) has been identified and purified to homogeneity. It is a single chain glycoprotein with an apparent molecular weight of 33,000 and an isoelectric point of pH 5.2. It specifically activates plasminogen through an enzymatic reaction. The activation of human native GIu-plasminogen by TSV-PA is due to a single cleavage of the molecule at the peptide bond Arg(561)-Val-(562). Purified TSV-PA, which catalyzes the hydrolysis of several tripeptide p-nitroanilide substrates, does not activate nor degrade prothrombin, factor X, or protein C and does not clot fibrinogen nor show fibrino(geno)lytic activity in the absence of plasminogen. The activity of TSV-PA was readily inhibited by phenylmethanesulfonyl fluoride and by p-nitrophenyl-p-guanidinobenzoate. Oligonucleotide primers designed on the basis of the N-terminal and the internal peptide sequences of TSV-PA were used for the amplification of cDNA fragments by polymerase chain reaction. This allowed the cloning of a full-length cDNA encoding TSV-PA from a cDNA library prepared from the venom glands. The deduced complete amino acid sequence of TSV-PA indicates that the mature TSV-PA protein is composed of 234 amino acids and contains a single potential N-gIycosylation site at Asn(1G1). The sequence of TSV-PA exhibits a high degree of sequence identity with other snake venom proteases: 66% with the protein C activator from Aghistrodon contortrix contortrix venom, 63% with batroxobin, and 60% with the factor V activator from Russell's viper venom. On the other hand, TSV-PA shows only 21-23% sequence similarity with the catalytic domains of u-PA and t-PA. Furthermore, TSV-PA lacks the sequence site that has been demonstrated to be responsible for the interaction of t-PA (KHRR) and u-PA (RRHR) with plasminogen activator inhibitor type 1.
Resumo:
A number of inactive serine protease homologues (SPHs), which have poorly understood functions, have been identified in invertebrates and vertebrates. Recently, several SPH transcripts have been reported from snake venom glands, which provide potential ne
Resumo:
While structural studies of reptile venom toxins can be achieved using lyophilized venom samples, until now the cloning of precursor cDNAs required sacrifice of the specimen for dissection of the venom glands. Here we describe a simple and rapid technique that unmasks venom protein mRNAs present in lyophilized venom samples. To illustrate the technique we have RT-PCR-amplified a range of venom protein transcripts from cDNA libraries derived from the venoms of a hemotoxic snake, the Chinese copperhead (Deinagkistrodon acutus), a neurotoxic snake, the black mamba (Dendroaspis polylepis), and a venomous lizard, the Gila monster (Heloderma suspectum). These include a metalloproteinase and phospholipase A2 from D. acutus, a potassium channel blocker, dendrotoxin K, from D. polylepis, and exendin-4 from H. suspectum. These findings imply that the apparent absence and/or lability of mRNA in complex biological matrices is not always real and paves the way for accelerated acquisition of molecular genetic data on venom toxins for scientific and potential therapeutic purposes without sacrifice of endangered herpetofauna.
Resumo:
In Apis mellifera the acid or venom gland is composed of secretory cells that surround a channel that opens into a reservoir devoid of musculature. This gland can at times present apical branching. In this study we recorded the frequency of branched venom glands in workers of Africanized bees (Apis mellifera Linnaeus) from six localities in the Pantanal region of Mato Grosso do Sul, and analyzed the relation among the length of the main duct, the length of the duct from the reservoir to the beginning of branching, the length of the branched segment (when present) and the total length of the gland. We sought to determine the probable genotypes of the bees from each population by using the model proposed by Alves-Junior. The frequency of branched glands varied from 50% to 83% in the worker bees coming from those places, indicating that this characteristic is primitive in these bees. The results of the Analysis of Discriminant Functions indicated significant differences in the morphometrical segments of the venom gland (Wilk's Lambda = 0.065; F-(27,F-30) = 4.507; P < 0.001), and permitted a differentiation of the populations studied. The genotypes inferred for the bees of each locality agree with the results obtained in the Analysis of Discriminant Functions and form three distinct groups, with some overlapping areas among them. In all of the populations considered the phenotype largevenom gland was predominant. It is inferred that bees with this phenotype (venom gland larger than S. 15 mm) have Gm(1) Gm(1) genotype, being therefore homozygotes for the major alleles and also for the modifier genes that codify this morphological trait. The high frequency of worker bees with large venom gland in all the places considered makes viable the development of a selection program in order to obtain bees with longer venom glands, aimed at the commercial production of venom by the beekeepers of the Pantanal region of Mato Grosso do Sul.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Histological analyses were made in order to evaluate the effects of the topic application of a synthetic juvenile hormone (JH-III Sigma) on the development of the venom glands in workers of Apis mellifera. Three experimental groups were used: the first received 1 μl of a dilution of the juvenile hormone in hexane (2μg/μl); the second group received 1 μl of hexane; and the third group, the control, did not receive any kind of treatment. The application was made on larvae at the beginning of the fifth instar and the glands were collected at different developmental stages. The results showed that the application of the diluted hormone, as well as the hexane alone, accelerated gland development in relation to the control group at all developmental stages studied. These data suggest that the juvenile hormone acts on the development of the venom gland; nevertheless, this action could be amplified by the effect of the solvent used in the present work, as well as in other studies concerning this matter.
Resumo:
The present investigation analyzed the influence of Juvenile Hormone (JH) on the venom glands of Apis mellifera workers through protein dosage and electrophoresis of venom gland extracts of newly emerged workers which were treated with 1 μl JH dissolved in hexane, in concentration of 2μg/μl. Newly emerged workers non-treated and treated with 1 μl hexane were the controls. Both JH and hexane provoke quantitative changes on the gland protein titre and on the protein electrophoretic profile. The disappearance of protein bands in the venom gland extracts of 14 day-old treated workers, a situation normally found only in 35 day-old non-treated workers, suggests that the JH treatment induces a precocious maturation of the worker venom gland.
Resumo:
A key component of the venom of many Australian snakes belonging to the elapid family is a toxin that is structurally and functionally similar to that of the mammalian prothrombinase complex. In mammals, this complex is responsible for the cleavage of prothrombin to thrombin and is composed of factor Xa in association with its cofactors calcium, phospholipids, and factor Va. The snake prothrombin activators have been classified on the basis of their requirement for cofactors for activity. The two major subgroups described in Australian elapid snakes, groups C and D, are differentiated by their requirement for mammalian coagulation factor Va. In this study, we describe the cloning, characterization, and comparative analysis of the factor X- and factor V-like components of the prothrombin activators from the venom glands of snakes possessing either group C or D prothrombin activators. The overall domain arrangement in these proteins was highly conserved between all elapids and with the corresponding mammalian clotting factors. The deduced protein sequence for the factor X-like protease precursor, identified in elapids containing either group C or D prothrombin activators, demonstrated a remarkable degree of relatedness to each other (80%-97%). The factor V-like component of the prothrombin activator, present only in snakes containing group C complexes, also showed a very high degree of homology (96%-98%). Expression of both the factor X- and factor V-like proteins determined by immunoblotting provided an additional means of separating these two groups at the molecular level. The molecular phylogenetic analysis described here represents a new approach for distinguishing group C and D snake prothrombin activators and correlates well with previous classifications.