955 resultados para vegetation structure
Resumo:
A permanent 2 ha (200 m x 100 m) plot was established for long-term monitoring of plant diversity and dynamics in a tropical dry deciduous forest of Bhadra Wildlife Sanctuary, Karnataka, southern India. Enumeration of all woody plants >= 1 cm DBH (diameter at breast height) yielded a total of 1766 individuals that belonged to 46 species, 37 genera and 24 families. Combretaceae was the most abundant family in the forest with a family importance value of 68.3. Plant density varied from 20 - 90 individuals with an average 35 individuals/quadrat (20 m x 20 m). Randia dumetorum, with 466 individuals (representing 26.7 % of the total density 2 ha(-1)) with species importance value of 36.25, was the dominant species in the plot. The total basal area of the plot was 18.09 m(2) ha(-1) with a mean of 0.72 m(2) quadrat(-1). The highest basal area of the plot was contributed by Combretaceae (12.93 m(2) 2 ha(-1)) at family level and Terminalia tomentosa (5.58 m(2) 2 ha(-1)) at species level. The lowest diameter class (1-10 cm) had the highest density (1054 individuals 2 ha(-1)), but basal area was highest in the 80 - 90 cm diameter class (5.03m(2) 2 ha(-1)). Most of the species exhibited random or aggregated distribution over the plot. This study provides a baseline information on the dry forests of Bhadra Wildlife Sanctuary.
Resumo:
In the present paper, we present the structure and composition of tropical evergreen and deciduous forests in the Western Ghats monitored under a long-term programme involving Indian Institute of Science, Earthwatch and volunteer investigators from HSBC. Currently, there is limited evidence on the status and dynamics of tropical forests in the context of human disturbance and climate change. Observations made in this study show that the `more disturbed' evergreen and one of the deciduous plots have low species diversity compared to the less-disturbed forests. There are also variations in the size class structure in the more and `less disturbed' forests of all the locations. The variation is particularly noticeable in the DBH size class 10 - 15 cm category. When biomass stock estimates are considered, there was no significant difference between evergreen and deciduous forests. The difference in biomass stocks between `less disturbed' and `more disturbed' forests within a forest type is also low. Thus, the biomass and carbon stock has not been impacted despite the dependence of communities on the forests. Periodic and long-term monitoring of the status and dynamics of the forests is necessary in the context of potential increased human pressure and climate change. There is, therefore, a need to inform the communities of the impact of extraction and its effect on regeneration so as to motivate them to adopt what may be termed as ``adaptive resource management'', so as to sustain the flow of forest products.
Resumo:
A study was conducted in Tebuwana Wathurana Wetland ecosystem to understand its vegetation structure and faunal composition in order to assess its conservation needs. As there are no published records on the flora and fauna of Wathurana Wetlands in Tebuwana, it is necessary to understand the ecological and other relevant features in order to develop strategies to conserve this wetland. These objectives were pursued by surveying the vegetation of the wetland and by identifying fish and bird species present. A total of 66 species of flora and 61 species of fauna were identified in the survey. Of the 27 fish species recorded from the Tebuwana Wetland, 9 species were endemic and 17 species belonged to the indigenous category. With regard to the flora in the wetlands, the dominant families were Rubaceae, Fabaceae and Arecaceae. The 66 species belonged to 39 families and 61 genera while 12 species were endemic and 4 species were considered highly threatened. These flora were found in four layers. Of the 22 species of birds recorded, two species were endemic. This study revealed that these Wathurana Wetlands have a high species diversity but that they face many threats including encroachments, extraction of forest products mainly as timber, land filling, mining and occurrence of invasive species. It is essential to minimize the exploitation of natural resources from this wetland in the future and in particular to mark the boundary, conduct awareness programmes and continue research.
Resumo:
Conservation efforts over the last 20 years for the Gunnison Sage-Grouse (Centrocercus minimus) have involved extensive habitat manipulations done predominantly to improve brood rearing habitat for the grouse. However, the effects of Gunnison Sage-Grouse habitat treatments on sympatric avifauna and responses of vegetation to manipulations are rarely measured, and if they are, it is immediately following treatment implementation. This study examined the concept of umbrella species management by retrospectively comparing density and occupancy of eight sagebrush associated songbird species and six measures of vegetation in treated and control sites. Our results suggested that songbird densities and occupancy changed for birds at the extreme ends of their association with sagebrush and varied with fine-scale habitat structure. We found Brewer’s Sparrows (Spizella breweri) decreased in density on treated sites and Vesper Sparrows (Pooecetes gramineus) increased. Occupancy estimation revealed that Brewer’s Sparrows and Green-tailed Towhees (Pipilo chlorurus) occupied significantly fewer treated points whereas Vesper Sparrows occupied significantly more. Vegetation comparisons between treated and control areas found shrub cover to be 26% lower in treated sites. Lower shrub cover in treated areas may explain the differences in occupancy and densities of the species sampled based on known habitat needs. The fine-scale analysis showed a negative relationship to forb height and cover for the Sage Sparrow (Amphispiza belli) indicating, from vegetation measures showing grass and forb cover during a good precipitation year covered significantly more area in the treatment than the control sites, that Sage Sparrows may also not respond favorably to Gunnison Sage-Grouse habitat treatments. While the concept of an umbrella species is appealing, evidence from this study suggests that conservation efforts aimed at the Gunnison Sage-Grouse may not be particularly effective for conserving other sagebrush obligate species of concern. This is probably due to Gunnison Sage-Grouse habitat management being focused on the improvement of brood rearing habitat which reduces sagebrush cover and promotes development of understory forbs and grasses.
Resumo:
Evidence is presented of widespread changes in structure and species composition between the 1980s and 2003–2004 from surveys of 249 British broadleaved woodlands. Structural components examined include canopy cover, vertical vegetation profiles, field-layer cover and deadwood abundance. Woods were located in 13 geographical localities and the patterns of change were examined for each locality as well as across all woods. Changes were not uniform throughout the localities; overall, there were significant decreases in canopy cover and increases in sub-canopy (2–10 m) cover. Changes in 0.5–2 m vegetation cover showed strong geographic patterns, increasing in western localities, but declining or showing no change in eastern localities. There were significant increases in canopy ash Fraxinus excelsior and decreases in oak Quercus robur/petraea. Shrub layer ash and honeysuckle Lonicera periclymenum increased while birch Betula spp. hawthorn Crataegus monogyna and hazel Corylus avellana declined. Within the field layer, both bracken Pteridium aquilinum and herbs increased. Overall, deadwood generally increased. Changes were consistent with reductions in active woodland management and changes in grazing and browsing pressure. These findings have important implications for sustainable active management of British broadleaved woodlands to meet silvicultural and biodiversity objectives.
Resumo:
This study analyses the influence of vegetation structure (i.e. leaf area index and canopy cover) and seasonal background changes on moderate-resolution imaging spectrometer (MODIS)-simulated reflectance data in open woodland. Approximately monthly spectral reflectance and transmittance field measurements (May 2011 to October 2013) of cork oak tree leaves (Quercus suber) and of the herbaceous understorey were recorded in the region of Ribatejo, Portugal. The geometric-optical and radiative transfer (GORT) model was used to simulate MODIS response (red, near-infrared) and to calculate vegetation indices, investigating their response to changes in the structure of the overstorey vegetation and to seasonal changes in the understorey using scenarios corresponding to contrasting phenological status (dry season vs. wet season). The performance of normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) is discussed. Results showed that SAVI and EVI were very sensitive to the emergence of background vegetation in the wet season compared to NDVI and that shading effects lead to an opposing trend in the vegetation indices. The information provided by this research can be useful to improve our understanding of the temporal dynamic of vegetation, monitored by vegetation indices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.
Resumo:
Changes in land use and land cover throughout the eastern half of North America have caused substantial declines in populations of birds that rely on grassland and shrubland vegetation types, including socially and economically important game birds such as the Northern Bobwhite (Colinus virginianus; hereafter bobwhites). As much attention is focused on habitat management and restoration for bobwhites, they may act as an umbrella species for other bird species with similar habitat requirements. We quantified the relationship of bobwhites to the overall bird community and evaluated the potential for bobwhites to act as an umbrella species for grassland and shrubland birds. We monitored bobwhite presence and bird community composition within 31 sample units on selected private lands in the south-central United States from 2009 to 2011. Bobwhites were strongly associated with other grassland and shrubland birds and were a significant positive predictor for 9 species. Seven of these, including Bell's Vireo (Vireo bellii), Dicksissel (Spiza americana), and Grasshopper Sparrow (Ammodramus savannarum), are listed as species of conservation concern. Species richness and occupancy probability of grassland and shrubland birds were higher relative to the overall bird community in sample units occupied by bobwhites. Our results show that bobwhites can act as an umbrella species for grassland and shrubland birds, although the specific species in any given situation will depend on region and management objectives. These results suggest that efficiency in conservation funding can be increased by using public interest in popular game species to leverage resources to meet multiple conservation objectives.
Resumo:
This report examines the interaction between hydrology and vegetation over a 10-year period, between 2001/02 and 2012 within six permanent tree island plots located on three tree islands, two plots each per tree island, established in 2001/02, along a hydrologic and productivity gradient. We hypothesize that: (H1) hydrologic differences within plots between census dates will result in marked differences in a) tree and sapling densities, b) tree basal area, and c) forest structure, i.e., canopy volume and height, and (H2) tree island growth, development, and succession is dependent on hydrologic fluxes, particularly during periods of prolonged droughts or below average hydroperiods.
Resumo:
Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.
Resumo:
Originally from Asia, Rubus niveus has become one of the most widespread invasive plant species in the Galapagos Islands. It has invaded open vegetation, shrubland and forest alike. It forms dense thickets up to 4 m high, appearing to displace native vegetation, and threaten the integrity of several native communities. This study used correlation analysis between a R. niveus cover gradient and a number of biotic (vascular plant species richness, cover and vegetation structure) and abiotic (light and soil properties) parameters to help understand possible impacts in one of the last remaining fragments of the Scalesia forest in Santa Cruz Island, Galapagos. Higher cover of R. niveus was associated with significantly lower native species richness and cover, and a different forest structure. Results illustrated that 60% R. niveus cover could be considered a threshold for these impacts. We suggest that a maximum of 40% R. niveus cover could be a suitable management target.
Resumo:
Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.