810 resultados para vegetation rehabilitation
Resumo:
Sibelco Australia Limited (SAL), a mineral sand mining operation on North Stradbroke Island, undertakes progressive rehabilitation of mined areas. Initial investigations have found that some areas at SAL’s Yarraman Mine have failed to redevelop towards approved criteria. This study, undertaken in 2010, examined ground cover rehabilitation of different aged plots at the Yarraman Mine to determine if there was a relationship between key soil and vegetation attributes. Vegetation and soil data were collected from five plots rehabilitated in 2003, 2006, 2008, 2009 and 2010, and one unmined plot. Cluster (PATN) analysis revealed that vegetation species composition, species richness and ground cover differed between plots. Principal component analysis (PCA) extracted ten soil attributes that were then correlated with vegetation data. The attributes extracted by PCA, in order of most common variance, were: water content, pH, terrolas depth, elevation, slope angle, leaf litter depth, total organic carbon, and counts of macrofauna, fungi and bacteria. All extracted attributes differed between plots, and all except bacteria correlated with at least one vegetation attribute. Water content and pH correlated most strongly with vegetation cover suggesting an increase in soil moisture and a reduction in pH are required in order to improve vegetation rehabilitation at Yarraman Mine. Further study is recommended to confirm these results using controlled experiments and to test potential solutions, such as organic amendments.
Resumo:
油蒿(Artemisia ordosica)与籽蒿(Artemisia sphaerocephala)为毛乌素沙地的优势物种,广泛用于我国北方干旱、半干旱区的生态恢复。油蒿与籽蒿种子萌发对温度、水分等环境条件的反应已有较为明确的研究结果,但关于这两种蒿属植物种子萌发对光照反应的研究目前存在两种不同的结论,对飞播技术的改善造成一定影响。 影响油蒿与籽蒿种子萌发对光照反应的因素较多。如种源地、结实部位、种子颜色、种子保存方式与时间、实验条件、温度等。考虑种源地、种子保存时间与方式、结实部位及温度,从多方面系统研究油蒿与籽蒿种子萌发对光照的反应。结果表明当温度较低时(10:20C),萌发率和萌发速率在黑暗条件下显著高于在光照条件下。采自榆林地区的种子萌发状况相对较差,萌发率和萌发速率在大多数情况下显著低于其他两地;各种源地上下部种子萌发率有一定差异,大多数结实部位为上部的种子最终萌发率和萌发速率高于下部的种子;保存几周的种子萌发率变化不大,但在温度较高和较低时,随着种子保存时间的延长,萌发率下降较快,而在适宜温度下种子萌发率变化不明显;种子保存方式的不同造成种子萌发情况的差异,但差异不明显;黑暗条件下比近似黑暗条件下的种子萌发率略低。上述因素对种子萌发均具有一定影响,但总体特征是种子萌发对光照的反应表现为强光抑制种子的萌发,黑暗促进种子萌发。当温度较高时(15:25C),光照与黑暗条件下种子萌发率差异不大,但黑暗条件下种子的萌发速率显著高于光照条件下;当其它条件相同时,种子萌发率和萌发速率显著高于温度较低时(10:20C)。因而,适宜的温度和黑暗条件有利于油蒿与籽蒿种子的萌发。在飞播实践时应为种子创造一定的沙埋条件,创造有利于种子萌发的黑暗环境,促进种子的萌发,提高飞播工作的成效。
Resumo:
为了确定水资源不足地区植被恢复潜力和水土保持林建设目标,在黄土丘陵半干旱区宁夏固原上黄试区,对相同立地条件的16年生人工柠条林进行疏伐,建立不同密度林地,进行林分密度、森林植被水土保持效益和土壤水分关系的定位实验。结果表明:平均基径随密度的增加而减少,二者为线性关系;盖度随密度的增加而增大,盖度与密度为对数关系;林冠截留随密度的增加而增大,二者为指数关系;地表径流随密度的增加而减少,二者为对数关系;泥沙含量随密度的减少而增加,二者关系可用倒S形曲线描述。虽然密度增加,盖度增加,森林植被水土保持效益增强,但是受土壤水资源的限制,柠条林有一个最大恢复限度。当超过限度时,势必会引发或加剧土壤旱化。
Resumo:
根据近年来黄土高原地区实施植被生态修复的经验和黄土高原生态安全考察成果,论述植被生态修复的特点和功能,提出植被生态修复的核心内涵是将人为促进群落演替的人力与天然群落演替的自然力结合起来,实现区域生态系统整体恢复与局部快速恢复相结合的有效途径。黄土高原植被生态修复的目标是:区域内植物群落物种多样性平均增加10%~15%;地带性植被的代表种盖度在群落中占到20%~25%;植被总覆盖度75%~85%;水土流失强度有显著性减少。目前植被生态修复的关键问题是有关基础理论研究和技术措施积累不足,方法简单,效益不高。未来应采取正确生态修复思路,尽快解决生态修复中关键技术理论;科学规划,在典型地区黄龙森林区和安塞森林草原区建立示范点,实施综合的植被生态修复措施,建立法律保障体系,为黄土高原植被生态修复奠定基础。
Resumo:
以野外样地调查和室内分析法研究了黄土丘陵区不同植被恢复年限下草地土壤微生物C、N及土壤呼吸熵的变化。结果表明,土壤微生物量碳明显地随着植被恢复年限的增加而增加。在恢复前23a,土壤微生物量碳在0~20cm土层年增加率为24.1%;20~40cm为104.4%。植被恢复23a后,0~20cm土层增长率为0.83%,20~40cm为0.19%。土壤微生物量N表现为在植被恢复的初期略有下降,3a后,开始出现明显增加。0~20cm土层年增长率为20.14%,20~40cm为15.11%。在植被恢复23a后,0~20cm土层的年增长率为0.14%,20~40cm变化不大。土壤微生物呼吸强度随着恢复年限的增加逐渐加强;土壤呼吸熵随植被封育时间的增加而呈对数降低趋势。土壤呼吸熵(qCO2)在反映土壤的生物质量变化时,显得更加稳定,受植物生长状况影响较小。相关分析表明,土壤微生物量和土壤微生物活性与土壤有机质、碱解氮和粘粒含量显著正相关;与土壤粉粒含量明显负相关;表层土壤pH值对其也有明显影响。草地植被自然恢复过程可增加土壤微生物活性,有利于土壤质量的提高。
Resumo:
通过对子午岭林区不同植被的土壤性质进行实验室测定和野外调查,对饱和土壤水分运动的重要参数之一土壤饱和导水率(Ks)及其相关因子进行了多元分析和通径分析,揭示了植被恢复提高土壤水分传输性能的机理,主要结论如下:土壤有机质是子午岭林区九种植被下土壤饱和导水率提高的主要驱动因子。不同植被下的土壤饱和导水率均随深度的增加而迅速降低,尽管草地和先锋草地在5~10cm深度有一强透水层。土壤饱和导水率在剖面上的平均值,从辽东栎、早期森林、灌丛、先锋草地、弃耕地到草地依次降低。灌丛与草地、弃耕地的差异达到显著水平,辽东栎顶级群落的饱和导水率最高,植被的恢复明显提高了土壤饱和导水率。土壤容重、毛管孔隙度、>0.25mm团聚体含量及粘粒含量直接影响土壤饱和导水率。土壤有机质含量的提高能够改善容重、毛管孔隙度、团聚体含量等物理性质。
Resumo:
以中国水土流失与生态安全综合科学考察——西北黄土区考察组获得的资料为依据,对黄土高原地区植被恢复的基础和潜力进行了系统分析,提出了植被恢复的目标和策略。黄土高原天然群落恢复的基本措施是封育,有条件的区域应实施人工促进,使植被自然恢复力与人为促进力相结合;人工植被建设应充分利用乡土树草种,合理利用外来种,采用防护性整地和管理措施,造林种草后引导乡土物种进入群落,进行天然化培育;以流域为治理单元,优化景观斑块空间布局和面积构成,逐步改造具有退化特征的人工群落,使建群种能够自我更新,群落可永续利用;政府部门在政策上要保护现有成果,扩大自然修复比例;保护大户承包治理的积极性,鼓励多元化投资,进行植被建设;扩大黄土区植被建设和科研投资力度,培育黄土区植被恢复方面的科技创新能力。
Resumo:
针对黄土高原地区生态建设的需求与水土保持科学研究现状,分析了黄土高原水土保持科学研究的成就与发展趋势,提出该区未来需加强土壤侵蚀过程、机制及侵蚀模型、植被恢复的潜力及调控、大尺度土壤侵蚀及水土保持的格局与规律、水土流失及治理的环境效应评价理论与模型、水土流失治理的生态服务功能评价和不同尺度水土保持与生态建设模式研究等重点研究领域。
Resumo:
土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.
Resumo:
采用计算分形维数的方法,对黄土丘陵区典型草原带土壤团聚体的分形特征及其对植被恢复的响应进行研究。结果表明:1)在植被恢复初期,土壤>10 mm粒级的团聚体含量在0~20和20~40 cm层次均较高,含量为331.4~525.6 g/kg。随植被恢复年限增加,10~7、7~5、5~3、3~2、2~1 mm粒级的团聚体绝对含量下降差异不明显。1~0.5、0.5~0.25和<0.25 mm小粒级土壤团聚体含量,在植被恢复初期(7 a)较高。2)随着植被恢复年限增加,土壤>5 mm粒级的水稳性团聚体含量相对下降很快,恢复7 a之后,大粒级土壤团聚体表现为上层含量比下层含量低的趋势。相对于干筛结果而言,土壤水稳性团聚体的粒径分布更为均匀、稳定,恢复7 a之后的土壤>0.25mm团聚体含量占到40%~50%,而>5 mm的土壤团聚体则占10%~23%。植被恢复过程中,土壤团聚体由大的团块向小颗粒的土壤团聚体转换,粒径分布更为均匀,土壤结构逐渐改善。3)不同恢复年限土壤团聚体分形维数变化范围为表层2.75~2.86,表下层2.77~2.89,变化范围小,20~40 cm土层的分形维数大于0~20 cm,恢复植被可使土壤分形...
Resumo:
The purpose of the present study was to increase understanding of the interaction of rural people and, specifically, women with the environment in a dry area in Sudan. The study that included both nomadic pastoralists and farmers aimed at answering two main research questions, namely: What kinds of roles have the local people, and the women in particular, had in land degradation in the study area and what kinds of issues would a gender-sensitive, forestry-related environmental rehabilitation intervention need to consider there? The study adopted the definition of land degradation as proposed by the United Nations Convention to Combat Desertification (UNCCD), which describes land degradation as reduction or loss the biological or economic productivity and complexity of land in arid, semi-arid and dry sub-humid areas. The Convention perceives desertification as land degradation. The dry study area in Sudan, South of the Sahara, has been the subject of land degradation or desertification discussions since the 1970s, and other studies have been also conducted to assess the degradation in the area. Nevertheless, the exact occurrence, scale and local significance of land degradation in the area is still unclear. This study explored how the rural population whose livelihood depended on the area, perceived environmental changes occurring there and compared their conceptions with other sources of information of the area such as research reports. The main fieldwork methods included interviews with open-ended questions and observation of people and the environment. The theoretical framework conceptualised the rural population as land users whose choices of environmental activities are affected by multiple factors in the social and biophysical contexts in which they live. It was emphasised that these factors have their own specific characteristics in different contexts, simultaneously recognising that there are also factors that generally affect environmental practices in various areas such as the land users' environmental literacy (conceptions of the environment), gender and livelihood needs. The people studied described that environmental changes, such as reduced vegetation cover and cropland production, had complicated the maintenance of their livelihoods in the study area. Some degraded sites were also identified through observations during the fieldwork. Whether a large-scale reduction of cropland productivity had occurred in the farmers' croplands remained, however, unclear. The study found that the environmental impact of the rural women's activities varied and was normally limited. The women's most significant environmental impact resulted from their cutting of trees, which was likely to contribute, at least in some places, to land degradation, affecting the environment together with climate and livestock. However, when a wider perspective is taken, it becomes questionable whether the women have really played roles in land degradation, since gender, poverty and the need to maintain livelihood had caused them to conduct environmentally harmful activities. The women have had, however, no power to change the causes of their activities. The findings further suggested that an inadequate availability of food was the most critical problem in the study area. Therefore, an environmental programme in the area was suggested to include technical measures to increase the productivity of croplands, opportunities for income generation and readiness to co-operate with other programmes to improve the local people's abilities to maintain their livelihoods. In order to protect the environment and alleviate the women's work burden, the introduction of fuel-saving stoves was also suggested. Furthermore, it was suggested that increased planting of trees on homesteads would be supported by an easy availability of tree seedlings. Planting trees on common property land was, however, perceived as extremely demanding in the study area, due to scarcity of such land. In addition, it became apparent that the local land users, and women in particular, needed to allocate their labour to maintain the immediate livelihood of their families and were not motivated to allocate their labour solely for environmental rehabilitation. Nonetheless, from the point of view of the existing social structures, women's active participation in a community-based environmental programme would be rather natural, particularly among the farmer women who had already formed a women's group and participated in communal decision making. Forming of a women group or groups was suggested to further support both the farmer women's and pastoral women's active participation within an environmental programme and their general empowerment. An Environmental programme would need to acknowledge that improving rural people's well-being and maintaining their livelihood in the study area requires development and co-operation with various sectors in Sudan.
Resumo:
Microcatchment water harvesting (MCWH) improved the survival and growth of planted trees on heavy soils in eastern Kenya five to six years after planting. In the best method, the cross-tied furrow microcatchments, the mean annual increments (MAI; based on the average biomass of living trees multiplied by tree density and survival) of the total and usable biomass in Prosopis juliflora were 2787 and 1610 kg ha-1 a-1 respectively, when the initial tree density was 500 to 1667 trees per hectare. Based on survival, the indigenous Acacia horrida, A. mellifera and A. zanzibarica were the most suitable species for planting using MCWH. When both survival and yield were considered, a local seed source of the introduced P. juliflora was superior to all other species. The MAI in MCWH was at best distinctly higher than that in the natural vegetation (163307 and 66111 kg ha-1 a-1 for total and usable biomass respectively); this cannot satisfy the fuelwood demand of concentrated populations, such as towns or irrigation schemes. The density of seeds of woody species in the topsoil was 40.1 seeds m-2 in the Acacia-Commiphora bushland and 12.6 seeds m-2 in the zone between the bushland and the Tana riverine forest. Rehabilitation of woody vegetation using the soil seed bank alone proved difficult due to the lack of seeds of desirable species. The regeneration and dynamics of woody vegetation were also studied both in cleared and undisturbed bushland. A sub-type of Acacia-Commiphora bushland was identified as Acacia reficiens bushland, in which the dominant Commiphora species is C. campestris. Most of the woody species did not have even-aged populations but cohort structures that were skewed towards young individuals. The woody vegetation and the status of soil nutrients were estimated to recover in 1520 years on Vertic Natrargid soils after total removal of above-ground vegetation.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.