991 resultados para vegetation pattern


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptual frameworks of dryland degradation commonly include ecohydrological feedbacks between landscape spatial organization and resource loss, so that decreasing cover and size of vegetation patches result in higher water and soil losses, which lead to further vegetation loss. However, the impacts of these feedbacks on dryland dynamics in response to external stress have barely been tested. Using a spatially-explicit model, we represented feedbacks between vegetation pattern and landscape resource loss by establishing a negative dependence of plant establishment on the connectivity of runoff-source areas (e.g., bare soils). We assessed the impact of various feedback strengths on the response of dryland ecosystems to changing external conditions. In general, for a given external pressure, these connectivity-mediated feedbacks decrease vegetation cover at equilibrium, which indicates a decrease in ecosystem resistance. Along a gradient of gradual increase of environmental pressure (e.g., aridity), the connectivity-mediated feedbacks decrease the amount of pressure required to cause a critical shift to a degraded state (ecosystem resilience). If environmental conditions improve, these feedbacks increase the pressure release needed to achieve the ecosystem recovery (restoration potential). The impact of these feedbacks on dryland response to external stress is markedly non-linear, which relies on the non-linear negative relationship between bare-soil connectivity and vegetation cover. Modelling studies on dryland vegetation dynamics not accounting for the connectivity-mediated feedbacks studied here may overestimate the resistance, resilience and restoration potential of drylands in response to environmental and human pressures. Our results also suggest that changes in vegetation pattern and associated hydrological connectivity may be more informative early-warning indicators of dryland degradation than changes in vegetation cover.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about 20 cycles km-1. Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas. © 2006 The Authors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The correlation between vegetation patterns (species distribution and richness) and altitudinal variation has been widely reported for tropical forests, thereby providing theoretical basis for biodiversity conservation. However, this relationship may have been oversimplified, as many other factors may influence vegetation patterns, such as disturbances, topography and geographic distance. Considering these other factors, our primary question was: is there a vegetation pattern associated with substantial altitudinal variation (10-1,093 m a.s.l.) in the Atlantic Rainforest-a top hotspot for biodiversity conservation-and, if so, what are the main factors driving this pattern? We addressed this question by sampling 11 1-ha plots, applying multivariate methods, correlations and variance partitioning. The Restinga (forest on sandbanks along the coastal plains of Brazil) and a lowland area that was selectively logged 40 years ago were floristically isolated from the other plots. The maximum species richness (>200 spp. per hectare) occurred at approximately 350 m a.s.l. (submontane forest). Gaps, multiple stemmed trees, average elevation and the standard deviation of the slope significantly affected the vegetation pattern. Spatial proximity also influenced the vegetation pattern as a structuring environmental variable or via dispersal constraints. Our results clarify, for the first time, the key variables that drive species distribution and richness across a large altitudinal range within the Atlantic Rainforest. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (‘‘S332’’) and its successor station (‘‘S332D’’). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The hydrologic regime of Shark Slough, the most extensive long hydroperiod marsh in Everglades National Park, is largely controlled by the location, volume, and timing of water delivered to it through several control structures from Water Conservation Areas north of the Park. Where natural or anthropogenic barriers to water flow are present, water management practices in this highly regulated system may result in an uneven distribution of water in the marsh, which may impact regional vegetation patterns. In this paper, we use data from 569 sampling locations along five cross-Slough transects to examine regional vegetation distribution, and to test and describe the association of marsh vegetation with several hydrologic and edaphic parameters. Analysis of vegetation:environment relationships yielded estimates of both mean and variance in soil depth, as well as annual hydroperiod, mean water depth, and 30-day maximum water depth within each cover type during the 1990’s. We found that rank abundances of the three major marsh cover types (Tall Sawgrass, Sparse Sawgrass, and Spikerush Marsh) were identical in all portions of Shark Slough, but regional trends in the relative abundance of individual communities were present. Analysis also indicated clear and consistent differences in the hydrologic regime of three marsh cover types, with hydroperiod and water depths increasing in the order Tall Sawgrass , Sparse Sawgrass , Spikerush Marsh. In contrast, soil depth decreased in the same order. Locally, these differences were quite subtle; within a management unit of Shark Slough, mean annual values for the two water depth parameters varied less than 15 cm among types, and hydroperiods varied by 65 days or less. More significantly, regional variation in hydrology equaled or exceeded the variation attributable to cover type within a small area. For instance, estimated hydroperiods for Tall Sawgrass in Northern Shark Slough were longer than for Spikerush Marsh in any of the other regions. Although some of this regional variation may reflect a natural gradient within the Slough, a large proportion is the result of compartmentalization due to current water management practices within the marsh.We conclude that hydroperiod or water depth are the most important influences on vegetation within management units, and attribute larger scale differences in vegetation pattern to the interactions among soil development, hydrology and fire regime in this pivotal portion of Everglades.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

植物种间作用是决定物种分布、种群动态、群落演变和生态系统功能的重要因子。长期以来,相关研究集中在竞争作用上。然而自1990年代以来,易化作用逐渐受到重视,被认为是植物群落中物种共存的主要推动力,尤其是在极端和受到干扰的环境中。很多研究都揭示出植物对其他特定的物种产生直接或间接的正向的作用。护卫植物主要通过两种机制对临近的物种产生正向作用,即对恶劣的自然环境的改善和对高强度干扰的阻止和减轻。灌木在很多条件下能够成为护卫植物,影响种群的分布、群落的多样性和生态系统的功能。 中国西南部的青藏高原的牧场上,非生物的环境胁迫(比如生长季短暂、辐射强度大和极端温度等)和生物的干扰作用(比如过度放牧等)都很强。有文献表明,随着过度放牧现象的加重和草地的不断退化,灌木的分布有逐渐扩大的趋势。针对灌木对过度放牧草地上小尺度植被格局的影响,我们在若尔盖地区展开了以下两方面的研究。 为了研究不同种类灌木的影响,我们在若尔盖高原上选择了既具有恶劣的自然环境又遭受过度放牧压力的草地,对三种灌木内外的相同大小面积上小尺度范围内的植被进行调查。三种灌木分别是高山绣线菊、窄叶鲜卑花和金露梅,它们在形态结构、高度和可食性上都存在差异。在不考虑灌木种类的基础上,我们发现物种丰度、总盖度、开花的物种数和花序数都是灌木内部高于外部,而均匀度则恰好相反,是外部要高于内部,香农多样性指数内外没有明显的差异。金露梅灌丛中内外物种丰度和均匀度的差异要明显高于窄叶鲜卑花,但是总盖度、开花的物种数和花序数的差异不随着灌木种类的不同而有明显的差异。大多数的物种(占总物种数的47-85%)并没有因为灌木的存在而在内外出现的频数上表现出差异,而相当一部分物种(占总物种数的13-39%)在灌木外部的频率要高,仅仅有很少的物种(占总物种数的3-13%)因为灌木的存在而受益,内部的频数要高于外部。这种对某些物种的保护作用没有表现在群落水平上,即提高群落的物种丰富度和多样性,因为同时发生的灌木和其他植物的竞争作用也会限制以致排除冠层下面某些物种的存在。灌木的可食性和形态结构(比如盖度、高度、冠层的紧实度等)能对它们跟其他植物的相互之间净作用的类型和强度产生影响。不同的灌木能保护不同种类、不同数量的植物,表明易化作用是物种特异性的,跟护卫植物有关,也跟受益者有关。通过植被的排序,金露梅和高山绣线菊内外的植被得到了很明显的分离,而窄叶鲜卑花的则没有。总体上来说,灌木的存在确实能够通过提高出现或开花的频率,保护了某些对放牧比较敏感的物种,而且这种易化作用是物种特异性的。内外植被的差异在放牧压力最大的金露梅灌丛中最大,表明过度放牧导致的大尺度的植被状况对于小尺度上灌丛内外的植被的差异所起的作用比灌木种类的作用更大。 为了研究同种灌木不同的分布类型对植被格局的影响,选择金露梅作为目标灌木。金露梅是当地常见灌木,有的植株孤立存在,有的则是很多株联合形成比较大的斑块。我们选择金露梅形成的斑块中央、外沿金露梅植株内部、外围和孤立的金露梅植株内部、外部五个位置,并在小尺度上进行了植被调查和比较,发现金露梅的存在确实保护了一些物种,但是种类有限,反而是大部分的物种在外部的频数要高与内部;从群落水平来看,金露梅冠层下的植被从丰富度、多样性上来讲并没有超过外部,仅仅是具有更高的均匀度和同质性;生殖方面的结果也是类似的,而且大部分物种跟其分布呈现出基本类似的格局。金露梅斑块的存在和自然围栏的产生没有起到很明显的保护作用,并没有使得斑块中央植被的丰富度、多样性、均匀度提高,而仅仅是提高了植物的长势(表现为具有较高的总盖度等);在物种水平,没有发现什么特异种的存在,仅仅发现能够促进一些物种在内部的生长或开花,而且比例很低。在这种效应的影响下,斑块边缘的金露梅相对于孤立的金露梅而言,也没有表现出更好的保护植被的能力。几乎所有的群落水平的指标都仅仅是受到灌木内外这个因素的影响,而两种分布格局(即:在斑块边缘和孤立存在)的影响是微乎其微的。植被排序的结果也充分证明了这一点,灌木内外的植被被明显的分离开来,而不同灌木中相应位置的植被则是混杂在一起。并且在物种水平上,除了极个别的物种之外,绝大部分物种内外的差异是是一致的,没有受到灌木分布格局的影响。即使个别物种具有不同的格局,也没有证据表明是受到了斑块中央植被的影响而产生的。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

混农季节性放牧(agropastoral transhumance)通过作物种植和畜牧生产相结合的方式对不同海拔高度带上的资源进行相互补充利用,在亚洲兴都库什地区、青藏高原、横断山、东部及南部非洲、南美安第斯地区等具有悠久的历史。这种传统的生计系统几千年以来一直是居住在该地区的人类社会和自然生态系统相互作用的主要形式之一。这种传统的资源利用方式与山地自然植被以及特殊的山地人类文化和社会特征具有密切的协同演变关系。认识和理解这一关系,是山地生态学和人类学的核心科学问题之一。近年来,山地生态系统的多重功能性及动态演变对山区社会经济可持续发展的重要意义受到人们的不断关注。本文通过对云南省德钦县的12个自然村的混农季节性放牧以及对云南德钦、四川壤塘等山地植被格局特别是高海拔地带植被格局的的详细调查,探讨青藏高原东缘地区混农季节性放牧的主要特征、系统构成及相互关系,及其在全球变化、经济全球化和市场化及现代化过程中的变化趋势,分析混农季节性放牧与高山林线格局及生态系统的互动关系,旨在探讨山地地区人类活动与自然生态系统之间的互动关系,从而为山区社会经济可持续发展、环境建设和生物多样性保护等国家战略提供理论依据。 调查结果表明,混农季节性放牧是一种适应青藏高原东部高山峡谷地区环境因子及自然资源呈明显的垂直分布、资源数量稀少而时空分布异质性极高的生存环境的一种传统经济形式。这种传统的畜牧业的主要生产目的仍然是提供当地基本生存所需的产品,饲养牲口的种类和数量取决于农户的当地需求并且受资源的限制,因而维持在比较低的水平的。分布在不同海拔高度的放牧资源在一年中被牲口利用的时间也不同,互为补充,共同构成混农季节性放牧的资源基础。根据各社区永久居住点的位置和该村的土地资源特别是牧草地资源的分布范围,牲口迁移的距离和格局有较大的差异。。天然牧场仍然是最主要的畜牧业生产资源。混农季节性放牧中的农业系统和牧业系统互为补充,共同构成调查地区完整的的生计系统,农耕活动为放牧活动提供精饲料如粮食等和冬季饲料如秸秆, 其数量往往成为家庭畜牧业生产规模的主要决定因子之一。 通过对牲口数量和结构、牲口的时空迁移格局、牧业活动在整个经济活动中的相对重要性以及牧业活动和作物种植的关系方面的研究分析,混农季节性放牧在近几十年发生了深刻的变化。主要表现在牲口数量总体下降,牲口组成发生变化,牲口移动性降低、牧业活动的经济重要性下降以及牧业活动和种植活动之间的相互依存度降低等。上述变化的根本驱动力是发生在当地、地区及全球尺度上的环境、政治、社会经济、技术和文化等的变化,从而造成当地群众畜牧生产目标、土地利用和劳动力的分布等发生了变化。当地生计系统发生的改变可能会带来对方面而深刻的政治、社会经济、文化和生态影响。 混农季节性放牧这种古老的传统生计策略面临着许多挑战,如冬季饲料短缺、草场退化、缺乏市场竞争力、经济重要性降低、对年轻人缺乏吸引力、国家缺乏专门的政策指导等。与此同时,经济全球化、市场经济、新技术的应用、替代生计机会的增加、国家对于山地生态系统的作用的重新定位等也为传统生计系统转型、实现社会与生态共赢创造了机遇。 混农季节性放牧活动对亚高山及树线交错带生态系统系统的互动方式主要体现在以下几个方面:(1)牲口啃食、践踏等影响森林群落更新,改变森林群落的组成和结构,从而影响森林群落的演替进程和植被格局。林线边缘是搭建夏棚的首选地点,因此林线及树线交错地带就成了牲口活动的主要场所之一;(2)利用火烧开辟、维持和改良高山牧场; 3)在亚高山火灾迹地的放牧活动能够阻止火烧迹地的顺向演替; 4)牧民在林线附近获取建材和薪材等活动影响高山林线附近森林的结构和功能。 在调查区域,梅里雪山、白马雪山、甲午雪山的林线海拔高度在4200-4300m之间; 四川雅江、理塘一线,林线位置多在4300-4400m;四川壤塘二林场一带的林线主体在4100-4200m,在个别地区达到4300m; 在贡嘎山的南坡和东坡一带,林线位置在3600-3700m;而在四川松潘一带,林线位置主体在3700-3800米左右。树线高度的分布趋势和林线一致。混农季节性放牧及其有关人类利用活动使研究地区很多地方高山林线降低、树线交错带宽变窄或消失。在研究地区,总体情况是,阳坡和半阳坡(南坡、西南坡等)的林线和树线比阴坡和半阴坡(北坡、东北坡等)低,变化幅度达20-200m。这种差异主要是为了开辟牧场而人为清除了南向坡自然林线及其以上的植被从而使林线位置下降所致。在南坡自然林线保留得比较好的地方,林线和树线依然可以达到甚至超过北坡林线和树线的高度。放牧活动抑制了高山林线带火烧迹地的天然更新,从而使林线位置保持在目前的位置。 放牧活动对高山林线带森林群落更新的影响是显著的。自然林线内的乔木个体密度特别是新生苗和幼苗的密度大大高于非自然林线。没有放牧的自然林线及树线交错带内的I级个体(新生苗)密度达到725-2917株/公顷,而与之相对的处理样地内I级个体的密度只有0-228株/公顷;II级个体(高度10-50cm)也表现出类似的趋势,在没有放牧的自然林线及树线交错带样方内,其密度达到550-5208株/,而在放牧处理样方内只有14-321株/公顷。在非自然林线带样地内,在有正常放牧的样地内,完全缺乏I级个体。 从相对比例来看,没有放牧的样方内的I、II级个体在全部个体中所占的比例显著高于有放牧活动的样方。放牧使林线交错带的乔木幼苗数量显著减少,从而影响林线及树线交错带森林群落的天然更新过程。林线和树线交错带的灌木对乔木幼苗具有重要的保护作用,能够为树线树种如冷杉等幼苗的定居体提供有利的微气候环境,同时保护苗免受牲口的啃食和践踏。火烧以后接着进行放牧能够100%地抑制高山林线带的幼苗更新。 高山牧场放牧强度降低、使用时间缩短而低海拔地带放牧强度增加是研究地区混农季节性放牧系统的一个显著变化。这种变化也必然会引起各海拔带上的生态系统的变化。放牧强度的降低、生产性用火的停止将导致原来通过人工火烧而降低并通过进一步的火烧和放牧活动来维持的林线及其以上地带的灌木盖度和高度的增加,从而为林线森林群落的扩张创造条件。 青藏高原东部高山峡谷地区是我国重要的山地生态系统,在我国的生物多样性保护、生态环境建设、社会经济可持续发展战略中具有举足轻重的作用。正确认识人类特别是当地传统的生计系统与生态环境系统的互动关系是实现上述战略目标的前提。决策者必须以综合、系统的的视角协调促进社会经济可持续发展、保护生物及文化多样性和维持人、牲口和生态系统之间的平衡的多重目标。 Agropastoral transhumance, which makes a complementary exploitation of the natural resources at different altitudinal belts through a combination of migratory animal husbandry and crop cultivation, has a long history in Hindu-Kush Himalaya, Tibet Plateau, Hengduan Ranges, eastern and southern Africa and the Andes region of south America.For millennia, this traditional livelihood strategy has been one of the main forms of interaction between human societies inhabiting in these regions and their natural ecocystems. A close co-evolutionary relationship has been developed between this indigenous resources management systems and the mountain vegetation systems on the one hand and a unique set of cultural values and social features on the other. Understanding this relationship has been one of the core scientific issues in mountain ecology and anthropology. In recent years, the importance of the multiple functions of the mountain ecosystems and their dynamic changes in the sustainable socio-economic development of the mountain regions has gained increasing attention. This paper, which is based on a detailed study on the agropastoral practices of the 12 natural villages in Deqin County of Yunnan, and the mountainnn vegetation patterns in Deqin of Yunnan and Rangtang County of Sichuan, intends to reveal the major characteristics, system composition and the inter-relations of the subsystems of the agropastoral transhumance in Eastern Tibetan Plateau as well as the trends of changes of the system within the context of global changes, economic globalization and modernity process of China and analyze the relations between agropastoral transhumance and alpine ecosystem, ao as to understand the interactions between human activities and natural ecosystems of the mountains and provide theoretical basis for the national strategies in eocioeconomic development, environmental reconstruction and biodiversity conservation in the mountain regions. Results of the survey indicate that agropastoral transhumance in the investigated area is a traditional economic form that is highly adapted to the eastern Tibet Plateau where the topography features high peaks and deep gorges and where the highly variable environmental parameters and scanty natural resources exhibit a distinct vertical spectrum of distribution and great temporal and spatial heterogeneity. The main objective of pastoral management is still aimed at the production of basic goods and services of local people and thus the type and size of animals raised for each household mainly depend on local needs and are limited by the availability of natural resources. The scale of production is relatively low. Pastoral resources at different altidudinal belts are complementarily used at different seasons of a year and thus form the resources basis for agropastoral production of the study area. Migration distances and patterns vary with the location of the permanent settlements, the elevational distribution range of the resources of the villages concerned. Natural pastures (rangelands) are the main fodder resources and sumplement feedings only account for less than 5% of the total fodder consumption. Crop cultivation and pastoral activities support each other to form a complete livelihood system. The ability of the farmig lands (crop cultivation) to provide the pastoral activities with concentrates and sumplements often becomes a main factor limiting the scale of livestock production at household level. Agropastoral transhumance is experiencing drastic changes in recent decades as is reflected in the size and composition of animals, the seasonal migration pattern, the relative importance of pastoralism in the household economy and the interplays of agricultural and pastoral elements of the system. In general, there is a decline in animal population and mobility, a shift in animal composition to meet new needs arising from changed macro-economic situation, a decrease in the relative importance in the household economy and an increasing decoupling of agro&pastoral relations. The fundamental divers of these changes can be traced to environmental, social, economic, technological and cultural changes from local to global levels and such changes have further caused local changes in livestock management objectives, land use and distribution of labor forces. Changes in local livelihood systems could have profound political, socioeconomic, cultural and ecological conseuquences. Agropastoral transhumance, as an age-old traditional livelihood strategy, is facing multifacet challenges, such as winter fodder shortage, rangeland degradation, lack of market competitiveness, decrease in economic importance, lack of appreciation among the young generation and adequate policies from the government. At the same time, economic globalization, market economy, intrdoctution of new technologies, increase of alternative income generating opportunities and the national re-oreitation of policies on mountain ecosystems have all brought about new opportunities for the transformation of the traditional livelihood system and the synchronized development of local society and the environment. Agropastoral transhumance interacts with the ecosystems at the timberline and treeline ecotone mainly through the following aspects: 1)Animal browsing and stamping affect the regeneration process of the forest communities and alters the composition and structure of the forest which in turn affect the succession process and vegetation pattern of the forest communities. Forest edges are the priority locations for summer houses and therefore the timeline and treeline area becomes the major venues of aninal activities; (2)herders create, maintain and improve pastures through burning that remove the forest communities at the timeline and treeline ecotone; 3)immediate grazing on the fire sites can significantly prevent the fire sites from perogressive succession; and 4)herders harvesting of construction timber and firewoods affects the structure and functions of the forest communities at the timberline and treeline zone. Timberline position in the survey region shows geographical variations. It is around 4200-4300m in Meilixueshan, Baimaxueshan and Jiawuxueshan in Northwest of Yunnan and rises to 4300-4400m in Yajiang County and Litang County of Sichuan. In Rangtang of Sichuan, it is between 4100-4200m, though reaching 4300m in localized sites. In the southern and eastern slopes of Gongga Mountain, the timberline is only between 3600m and 3700m and in Songpan County at the upper reach of the Minjiang River the timberline is around 3700-3800m.Treeline pattern follows similar trend. In many places, agropastoral transhumance and related human activities have lowered the timberline and treeline and narrowed or removed the treeline ecotone. In the area of survey, generally speaking, timberlines and treelines are lower on the southern slopes than on the northern slopes, with a difference between 20 and 200m. This is mainly because that the use of fires to crerate pastures has removed the forest vegetation at the previous timberline and above. In fact, in many places, well-preserved forests on the south slopes have even high timberline position that the corresponding northern slopes. At subalpine zone, grazing activities could have prohibited the natural regeneration of many forest fire sites and maintained the forest position at the present level. Grazing has a significant impact on the regernation process of forest communities at the timberline zone. Natural timberline and treeline ecotone has much higher density of treeline species individuals especially the emergents and seedlings than the timberlines that are maintained by human activities. In natural timberline and treelien ecotone without grazing interference, the density of the I Class seedlings (less than 10cm in height) ranges 725-2917 /hm2; while that in the treatment plots (with grazing disturbance) is only 0-228//hm2;II Class seedlings (10-50cm)exhibit similar density trends, reaching 550-5208//hm2 in natural timberline without grazing but only 14-321//hm2 in the plots with grazing treatment. In the man-created timberlines, there is no I Class seedling at all in plots with normal grazing activities. In relative terms, in plots without grazing activities, the propotion of I Class and II Class seedlings is much higher than that in plots with grazing. Grazing activities have significantly reduced the number of seedlings in the timberline ane treeline ecotone, and thus affect the natural regeneration process of the forests. Shrubs at the timberline and treeline ecotone can effectively protect the seedlings from severe climate and animal tramping, thus increasing the survival rate of the seedlings. Grazing following fires can completely inhibit forest regeneration process at timberline. Changes in agropastoral transhumance will have great impact on the timberline and treeline pattern of the studied area. The decrease in grazing intensity on alpine pastrues and the cessation of the use of fires will result an increase in the cover and height of shrubs above the present human-maintained treeline, which will create further condition for the expansion of timberline forest communities. Eastern Tibet Plateau harbors some most important mountain ecosystems of China that are of vital importance to the country’s strategy in biodiversity conservation, environmental construction and sustainable sociaoeconomic development. A proper knowledge of the interactions between traditional livelihood systems and the ecosystems in the region is a precondition to the realization of the above strategic goals. Therefore, the decision-makers must have a holistic and systemic perspective so as to integrate the multiple objectives of promoting sustainable socioeconomic development, conserving biological and cultural diversity and maintaining the balances among people, animal population and the ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les recherches récapitulées dans cette thèse de doctorat ont porté sur les causes de l’organisation spatiale des végétations périodiques. Ces structures paysagères aux motifs réguliers, tachetés, tigrés ou labyrinthiques, d’échelle décamétrique à hectométrique, couvrant des étendues considérables sur au moins trois continents, constituent un cas d’école dans l’étude des processus endogènes présidant à l’hétérogénéité du couvert végétal. Ces structures prennent place sur un substrat homogène, mis à part la rétroaction du couvert lui-même, et sont marquées par des écotones abrupts et la persistance d’une proportion considérable de sol nu. Plusieurs modèles ont mis en avant l’existence possible d’un phénomène d’auto-organisation du couvert, qui verrait une structure d’ensemble émerger des interactions locales entre individus. Ces modèles se basent sur le jeu simultané de la consommation de la ressource (compétition) et de l’amélioration de l’un ou l’autre des éléments du bilan de la même ressource par le couvert (facilitation). La condition à l’existence d’une structure d’ensemble spatialement périodique et stable réside dans une différence entre la portée de la compétition (plus grande) et celle de la facilitation. L’apparition de ces structures est modulée par le taux de croissance biologique, qui est le reflet des contraintes extérieures telles que l’aridité, le pâturage ou la coupe de bois. Le modus operandi des interactions spatiales supposées entre individus reste largement à préciser.

Nos recherches ont été menées au sud-ouest de la République du Niger, à l’intérieur et dans les environs du parc Régional du W. Trois axes ont été explorés :(i) Une étude de la dépendance spatiale entre la structure de la végétation (biovolumes cartographiés) et les paramètres du milieu abiotique (relief, sol), sur base d’analyses spectrales et cross-spectrales par transformée de Fourier (1D et 2D). (ii) Une étude diachronique (1956, 1975 et 1996) à large échelle (3000 km²) de l’influence de l’aridité et des pressions d’origine anthropique sur l’auto-organisation des végétations périodiques, basée sur la caractérisation de la structure spatiale des paysages sur photos aériennes via la transformée de Fourier en 2D. (iii) Trois études portant sur les interactions spatiales entre individus :En premier lieu, via l’excavation des systèmes racinaires (air pulsé) ;Ensuite, par un suivi spatio-temporel du bilan hydrique du sol (blocs de gypse) ;Enfin, via le marquage de la ressource par du deutérium.

Nous avons ainsi pu établir que les végétations périodiques constituent bien un mode d’auto-organisation pouvant survenir sur substrat homogène et modulé par les contraintes climatiques et anthropiques. Un ajustement rapide entre l’organisation des végétations périodiques et le climat a pu être montrée en zone protégée. La superficie et l’organisation des végétations périodiques y ont tour à tour progressé et régressé en fonction d’épisodes secs ou humides. Par contre, en dehors de l’aire protégée, la possibilité d’une restauration du couvert semble fortement liée au taux d’exploitation des ressources végétales. Ces résultats ont d’importantes implications quant à la compréhension des interactions entre climat et écosystèmes et à l’évaluation de leurs capacités de charge. La caractérisation de la structure spatiale des végétations arides, notamment par la transformée de Fourier d’images HR, devrait être généralisée comme outil de monitoring de l’état de ces écosystèmes. Nos études portant sur les modes d’interactions spatiales ont permis de confirmer l’existence d’une facilitation à courte portée du couvert végétal sur la ressource. Cependant, cette facilitation ne semble pas s’exercer sur le terme du bilan hydrique traditionnellement avancé, à savoir l’infiltration, mais plutôt sur le taux d’évaporation (deux fois moindre à l’ombre des canopées). Ce mécanisme exclut l’existence de transferts diffusifs souterrains entre sols nu et fourrés. Des transferts inverses semblent d’ailleurs montrés par le marquage isotopique. L’étude du bilan hydrique et la cartographie du micro-relief, ainsi que la profondeur fortement réduite de la zone d’exploitation racinaire, jettent de sérieux doutes quant au rôle communément admis des transferts d’eau par ruissellement/diffusion de surface en tant que processus clé dans la compétition à distance entre les plantes. L’alternative réside dans l’existence d’une compétition racinaire de portée supérieure aux canopées. Cette hypothèse trouve une confirmation tant par les rhizosphères excavées, superficielles et étendues, que dans le marquage isotopique, montrant des contaminations d’arbustes situés à plus de 15 m de la zone d’apport. De même, l’étude du bilan hydrique met en évidence les influences simultanées et contradictoires (facilitation/compétition) des ligneux sur l’évapotranspiration.

/

This PhD thesis gathers results of a research dealing with the causes of the spatial organisation of periodic vegetations. These landscape structures, featuring regular spotted, labyrinthine or banded patterns of decametric to hectometric scale, and extending over considerable areas on at least three continents, constitute a perfect study case to approach endogenous processes leading to vegetation heterogeneities. These patterns occur over homogeneous substratum, except for vegetation’s own feedbacks, and are marked by sharp ecotones and the persistence of a considerable amount of bare soil. A number of models suggested a possible case of self-organized patterning, in which the general structure would emerge from local interactions between individuals. Those models rest on the interplay of competitive and facilitative effects, relating to soil water consumption and to soil water budget enhancement by vegetation. A general necessary condition for pattern formation to occur is that negative interactions (competition) have a larger range than positive interactions (facilitation). Moreover, all models agree with the idea that patterning occurs when vegetation growth decreases, for instance as a result of reduced water availability, domestic grazing or wood cutting, therefore viewing patterns as a self-organised response to environmental constraints. However the modus operandi of the spatial interactions between individual plants remains largely to be specified.

We carried out a field research in South-West Niger, within and around the W Regional Park. Three research lines were explored: (i) The study of the spatial dependency between the vegetation pattern (mapped biovolumes) and the factors of the abiotic environment (soil, relief), on the basis of spectral and cross-spectral analyses with Fourier transform (1D and 2D). (ii) A broad scale diachronic study (1956, 1975, 1996) of the influence of aridity and human induced pressures on the vegetation self-patterning, based on the characterisation of patterns on high resolution remote sensing data via 2D Fourier transform. (iii) Three different approaches of the spatial interactions between individuals: via root systems excavation with pulsed air; via the monitoring in space and time of the soil water budget (gypsum blocks method); and via water resource labelling with deuterated water.

We could establish that periodic vegetations are indeed the result of a self-organisation process, occurring in homogeneous substratum conditions and modulated by climate and human constraints. A rapid adjustment between vegetation patterning and climate could be observed in protected zones. The area and patterning of the periodic vegetations successively progressed and regressed, following drier or wetter climate conditions. On the other hand, outside protected areas, the restoration ability of vegetation appeared to depend on the degree of vegetation resource exploitation. These results have important implications regarding the study of vegetation-climate interactions and the evaluation of ecosystems’ carrying capacities. Spatial pattern characterisation in arid vegetations using Fourier transform of HR remote sensing data should be generalised for the monitoring of those ecosystems. Our studies dealing with spatial interaction mechanisms confirmed the existence of a short range facilitation of the cover on water resource. However, this facilitation does not seem to act through the commonly accepted infiltration component, but rather on the evaporative rate (twice less within thickets). This mechanism excludes underground diffusive transfers between bare ground and vegetation. Inverse transfers were even shown by deuterium labelling. Water budget study and micro-elevation mapping, along with consistent soil shallowness, together cast serious doubts on the traditional mechanism of run-off/diffusion of surface water as a key process of the long range competition between plants. An alternative explanation lies in long range root competition. This hypothesis find support as well in the excavated root systems, shallow and wide, as in isotopic labelling, showing contaminations of shrubs located up to 15 m of the irrigated area. Water budget study also evidenced simultaneous contradictory effects (facilitation/competition) of shrubs on evapotranspiration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A survey of the Neogene flora and vegetation pattern of the Pannonian domain based on 18 selected fossil plant assemblages is given. Flora and vegetation patterns are based on well-documented and studied fossil plant assemblages (macrofloras, primarily leaves). A general but slow cooling trend is definitely observable after the Early Miocene as reflected by both quantitative climate reconstructions and floristic change, i.e. decrease of diversity, slow disappearance of thermophilous and exotic elements, as well as decrease in the variety of vegetation types. A significant decline of coldest month temperatures (as compared to warmest month temperatures) must have played a defining role in forming flora and vegetation through the Neogene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new site with Lateglacial palaeosols covered by 0.8 - 2.4 m thick aeolian sands is presented. The buried soils were subjected to multidisciplinary analyses (pedology, micromorphology, geochronology, dendrology, palynology, macrofossils). The buried soil cover comprises a catena from relatively dry ('Nano'-Podzol, Arenosol) via moist (Histic Gleysol, Gleysol) to wet conditions (Histosol). Dry soils are similar to the so-called Usselo soil, as described from sites in NW Europe and central Poland. The buried soil surface covers ca. 3.4 km**2. Pollen analyses date this surface into the late Aller0d. Due to a possible contamination by younger carbon, radiocarbon dates are too young. OSL dates indicate that the covering by aeolian sands most probably occurred during the Younger Dryas. Botanical analyses enables the reconstruction of a vegetation pattern typical for the late Allerod. Large wooden remains of pine and birch were recorded.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vegetation pattern of siliceous boulder snow beds (Dicranoweision crispulae all. nov. prov.) of Svalbard was investigated by using transect studies in several places on Spitsbergen. Dicranoweisia crispula is the best diagnostic species. It is found throughout the whole snow bed, is a good differential species against Racomitrium lanuginosum communities above the snow bed, and does not occur on basic rocks. Three Andreaea spp. are also among the most important members of these communities. They are all acidophilous, but with different pH preferences. Eight weakly acidophilous species lacking both on basic and on gneissic/granitic rocks, are reported from Svalbard. Half of these are characteristic species of Dicranoweision crispulae on Svalbard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A leishmaniose visceral é uma zoonose de grande importância para a saúde pública, com ampla distribuição geográfica e epidemiologia complexa. Apesar de diversas estratégias de controle, a doença continua se expandindo, tendo o cão como principal reservatório. Levando em consideração que análises espaciais são úteis para compreender melhor a dinâmica da doença, avaliar fatores de risco e complementar os programas de prevenção e controle, o presente estudo teve como objetivo caracterizar a distribuição da leishmaniose visceral canina e relacionar sua dinâmica com características ou feições espaciais no município de Panorama (SP). A partir de dados secundários coletados em um inquérito sorológico entre agosto de 2012 e janeiro de 2013, 986 cães foram classificados como positivos e negativos de acordo com o protocolo oficial do Ministério da Saúde. Posteriormente uma análise espacial foi conduzida, compreendendo desde a visualização dos dados até a elaboração de um mapa de risco relativo, passando por análises de cluster global (função K) e local (varredura espacial). Para avaliar uma possível relação entre o cluster detectado com a vegetação na área de estudo, calculou-se o Índice de Vegetação por Diferença Normalizada (NDVI). A prevalência da doença encontrada na população de cães estudada foi de 20,3% (200/986). A visualização espacial demonstrou que tanto animais positivos quanto negativos estavam distribuídos por toda a área de estudo. O mapa de intensidade dos animais positivos apontou duas localidades de possíveis clusters, quando comparado ao mapa de intensidade dos animais negativos. As análises de cluster confirmaram a presença de um aglomerado e um cluster foi detectado na região central do município, com um risco relativo de 2,63 (p=0,01). A variação espacial do risco relativo na área de estudo foi mapeada e também identificou a mesma região como área significativa de alto risco (p<0,05). Não foram observadas diferenças no padrão de vegetação comparando as áreas interna e externa ao cluster. Sendo assim, novos estudos devem ser realizados com o intuito de compreender outros fatores de risco que possam ter levado à ocorrência do cluster descrito. A prevalência, a localização do cluster espacial e o mapa de risco relativo fornecem subsídios para direcionamento de esforços do Setor de Vigilância Epidemiológica de Panorama para áreas de alto risco, o que pode poupar recursos e aperfeiçoar o controle da leishmaniose visceral no município.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg−1 dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, including WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the southern Everglades, vegetation in both the marl prairie and ridge and slough landscapes is sensitive to large-scale restoration activities associated with the Comprehensive Everglades Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA) 2000 to restore the south Florida ecosystem. More specifically, changes in hydrologic regimes at both local and landscape scales are likely to affect vegetation composition along marl prairie-slough gradient resulting in a shift in boundary between plant communities in these landscapes. To strengthen our ability to assess how vegetation would respond to changes in underlying ecosystem drivers along the gradient, an improved understanding of reference conditions of plant community structure and function, and their responses to major stressors is important. In this regard, a study of vegetation structure and composition in relation to physical and biological processes along the marl prairie-slough gradient was initiated in 2005, and has continued through 2012 with funding from US Army Corps of Engineers (USACOE) (Cooperative Agreement # W912HZ-09-2-0018 Modification No.: P00002). This study addresses the hypothesis with respect to RECOVER-MAP monitoring item 3.1.3.5 – “Marl Prairie/Slough Gradients; patterns and trends in Shark Slough marshes and associated marl prairies”.