997 resultados para vegetation fragmentation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last decade Quaternary pollen analysis has developed towards improved pollen-taxonomical precision, automated pollen identification and more rigorous definition of pollen assemblage zones. There have been significant efforts to model the spatial representation of pollen records in lake sediments which is important for more precise interpretation of the pollen records in terms of past vegetation patterns. We review the difficulties in matching modelled post-glacial plant migration patterns with pollen-based palaeorecords and discuss the potential of DNA analysis of pollen to investigate the ancestry and past migration pathways of the plants. In population ecology there has been an acceleration of the widely advocated conceptual advance of pollen-analytical research from vaguely defined ‘environmental reconstructions’ towards investigating more precisely defined ecological problems aligned with the current ecological theories. Examples of such research have included an increasing number of investigations about the ecological impacts of past disturbances, often integrating pollen records with other palaeoecological data. Such an approach has also been applied to incorporate a time perspective to the questions of ecosystem restoration, nature conservation and forest management. New lines of research are the use of pollen analysis to study long-term patterns of vegetation diversity, such as the role of glacial-age vegetation fragmentation as a cause of Amazonian rain forest diversity, and to investigate links between pollen richness and past plant diversity. Palaeoclimatological use of pollen records has become more quantitative and has included more precise and rigorous testing of pollen-climate calibration models with modern climate data. These tests show the approximate nature of the models and warn against a too straightforward climatic interpretation of the small-scale variation in reconstructions. Pollenbased climate reconstructions over the Late Glacial–early Holocene boundary have indicated that pollen-stratigraphical changes have been rapid with no evidence for response lags. This does not rule out the possibility of migrational disequilibrium, however, as the rapid changes may be mostly due to nonmigrational responses of existing vegetation. It is therefore difficult to assess whether the amplitude of reconstructed climate change reflects real climate change. Other outstanding problems remain the obscure relationship of pollen production and climate, the role of human impact and other nonclimatic factors, and nonanalogue situations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of fauna and vegetation surveys conducted around Portland Aluminium smelter between 1979 and 2004 found small mammal abundance and diversity had declined and changes in vegetation communities were related to changes in fire patterns, vegetation fragmentation and weed invasion. Small mammal numbers were greater in nearby National Parks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Landscape change is an ongoing process even within established urban landscapes. Yet, analyses of fragmentation and deforestation have focused primarily on the conversion of non-urban to urban landscapes in rural landscapes and ignored urban landscapes. To determine the ecological effects of continued urbanization in urban landscapes, tree-covered patches were mapped in the Gwynns Falls watershed (17158.6 ha) in Maryland for 1994 and 1999 to document fragmentation, deforestation, and reforestation. The watershed was divided into lower (urban core), middle (older suburbs), and upper (recent suburbs) subsections. Over the entire watershed a net of 264.5 of 4855.5 ha of tree-covered patches were converted to urban land use-125 new tree-covered patches were added through fragmentation, 4 were added through reforestation, 43 were lost through deforestation, and 7 were combined with an adjacent patch. In addition, 180 patches were reduced in size. In the urban core, deforestation continued with conversion to commercial land use. Because of the lack of vegetation, commercial land uses are problematic for both species conservation and derived ecosystem benefits. In the lower subsection, shape complexity increased for tree-covered patches less than 10 ha. Changes in shape resulted from canopy expansion, planted materials, and reforestation of vacant sites. In the middle and upper subsections, the shape index value for tree-covered patches decreased, indicating simplification. Density analyses of the subsections showed no change with respect to patch densities but pointed out the importance of small patches (≤5 ha) as "stepping stone" to link large patches (e. g., ≥100 ha). Using an urban forest effect model, we estimated, for the entire watershed, total carbon loss and pollution removal, from 1994 to 1999, to be 14,235,889.2 kg and 13,011.4 kg, respectively due to urban land-use conversions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bronze Age in Britain was a time of major social and cultural changes, reflected in the division of the landscape into field systems and the establishment of new belief systems and ritual practices. Several hypotheses have been advanced to explain these changes, and assessment of many of them is dependent on the availability of detailed palaeoenvironmental data from the sites concerned. This paper explores the development of a later prehistoric landscape in Orkney, where a Bronze Age field system and an apparently ritually-deposited late Bronze Age axe head are located in an area of deep blanket peat from which high-resolution palaeoenvironmental sequences have been recovered. There is no indication that the field system was constructed to facilitate agricultural intensification, and it more likely reflects a cultural response to social fragmentation associated with a more dispersed settlement pattern. There is evidence for wetter conditions during the later Bronze Age, and the apparent votive deposit may reflect the efforts of the local population to maintain community integrity during a time of perceptible environmental change leading to loss of farmland. The study emphasises the advantages of close integration of palaeoenvironmental and archaeological data for interpretation of prehistoric human activity. The palaeoenvironmental data also provide further evidence for the complexity of prehistoric woodland communities in Orkney, hinting at greater diversity than is often assumed. Additionally, differing dates for woodland decline in the two sequences highlight the dangers of over-extrapolation from trends observed in a single pollen profile, even at a very local scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of human-induced disturbances such as forest fragmentation and recovery after deforestation for pasture or agricultural activities have resulted in a complex landscape mosaic in the Una region of northeastern Brazil. Using a set of vegetation descriptors, we investigated the main structural changes observed in forest categories that comprise the major components of the regional landscape and searched for potential key descriptors that could be used to discriminate among different forest categories. We assessed the forest structure of five habitat categories defined as (I) interiors and (2) edges of large fragments of old-growth forest (>1000 ha), (3) interiors and (4) edges of small forest fragments (<100 ha), and (5) early secondary forests. Forest descriptors used here were: frequency of herbaceous lianas and woody climbers, number of standing dead trees, number of fallen trunks, litter depth, number of pioneer plants (early secondary and shade-intolerant species), vertical foliage stratification profile and distribution Of trees in different diameter classes. Edges and interiors of forest fragments were significantly different only in the number of standing dead trees. Secondary forests and edges of fragments showed differences in litter depth, fallen trunks and number of pioneer trees, and secondary forests were significantly different from fragment interiors in the number of standing dead trees and the number of pioneer trees. Horizontal and vertical structure evaluated via ordination analysis showed that fragment interiors, compared to secondary forests, were characterized by a greater number of medium (25-35 cm) and large (35-50 cm) trees and smaller numbers of thin trees (5-10 cm). There was great heterogeneity at the edges of small and large fragments, as these sites were distributed along almost the entire gradient. Most interiors of large and small fragments presented higher values of foliage densities at higher strata ( 15-20 m and at 20-25 m height), and lower densities at 1-5 m. All secondary forests and some fragment edge sites showed an opposite tendency. A discriminant function highlighted differences among forest categories, with transects of large fragment interiors and secondary forests representing two extremes along a disturbance gradient determined by foliage structure (densities at 15-20 m and 20-25 m), with the edges of both large and small fragments and the interiors of small fragments scattered across the gradient. The major underlying processes determining patterns of forest disturbance in the study region are discussed, highlighting the importance of forest fragments, independently of its size, as forests recovery after clear cut show a greatly distinct structure, with profound implications on fauna movements. (C) 2009 Elsevier BY. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat loss and fragmentation on the Mornington Peninsula, Victoria, Australia, has resulted in a mosaic of forest patches, forest edges abutted by agricultural land and linear habitat strips amidst a human-modified land matrix. To examine the use of forest elements by the avifauna in this landscape, bird populations were sampled along fixed transects established within forest interiors, on forest edges and along forested roadsides. A total of 60 species was recorded during this study, five of which were introduced. Species richness and diversity did not differ significantly between the three habitat elements, but avifaunal composition varied considerably. The species assemblages of all habitat elements differed significantly, with forest interiors and roadsides showing the greatest difference and forest interiors and forest edges showing the least degree of difference. Forest-dependent bird species used both interiors and edges. Interiors differed from edges and roadsides in having lower abundances of open country species, predatory species and introduced species. A clear gradient of change in bird communities from forest interiors to roadside vegetation was observed. This study suggests that the interiors of medium-sized (<1 000 ha) patches may play an important role in conserving bird biodiversity on a local level as they provide refuge for forest-dependent native species in extensively cleared landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inference concerning the impact of habitat fragmentation on dispersal and gene flow is a key theme in landscape genetics. Recently, the ability of established approaches to identify reliably the differential effects of landscape structure (e.g. land-cover composition, remnant vegetation configuration and extent) on the mobility of organisms has been questioned. More explicit methods of predicting and testing for such effects must move beyond post hoc explanations for single landscapes and species. Here, we document a process for making a priori predictions, using existing spatial and ecological data and expert opinion, of the effects of landscape structure on genetic structure of multiple species across replicated landscape blocks. We compare the results of two common methods for estimating the influence of landscape structure on effective distance: least-cost path analysis and isolation-by-resistance. We present a series of alternative models of genetic connectivity in the study area, represented by different landscape resistance surfaces for calculating effective distance, and identify appropriate null models. The process is applied to ten species of sympatric woodland-dependant birds. For each species, we rank a priori the expectation of fit of genetic response to the models according to the expected response of birds to loss of structural connectivity and landscape-scale tree-cover. These rankings (our hypotheses) are presented for testing with empirical genetic data in a subsequent contribution. We propose that this replicated landscape, multi-species approach offers a robust method for identifying the likely effects of landscape fragmentation on dispersal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat loss and associated fragmentation effects are well-recognised threats to biodiversity. Loss of functional connectivity (mobility, gene flow and demographic continuity) could result in population decline in altered habitat, because smaller, isolated populations are more vulnerable to extinction. We tested whether substantial habitat reduction plus fragmentation is associated with reduced gene flow in three 'decliner' woodland-dependent bird species (eastern yellow robin, weebill and spotted pardalote) identified in earlier work to have declined disproportionately in heavily fragmented landscapes in the Box-Ironbark forest region in north-central Victoria, Australia. For these three decliners, and one 'tolerant' species (striated pardalote), we compared patterns of genetic diversity, relatedness, effective population size, sex-ratios and genic (allele frequency) differentiation among landscapes of different total tree cover, identified population subdivision at the regional scale, and explored fine-scale genotypic (individual-based genetic signature) structure. Unexpectedly high genetic connectivity across the study region was detected for 'decliner' and 'tolerant' species. Power analysis simulations suggest that moderate reductions in gene flow should have been detectable. However, there was evidence of local negative effects of reduced habitat extent and structural connectivity: slightly lower effective population sizes, lower genetic diversity, higher within-site relatedness and altered sex-ratios (for weebill and eastern yellow robin) in 10 x 10 km 'landscapes' with low vegetation cover. We conclude that reduced structural connectivity in the Box-Ironbark ecosystem may still allow sufficient gene flow to avoid the harmful effects of inbreeding in our study species. Although there may still be negative consequences of fragmentation for demographic connectivity, the high genetic connectivity of mobile bird species in this system suggests that reconnecting isolated habitat patches may be less important than increasing habitat extent and/or quality if these need to be traded off.