951 resultados para vector quantization based Gaussian modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive event-related potentials (ERPs) are widely employed in the study of dementive disorders. The morphology of averaged response is known to be under the influence of neurodegenerative processes and exploited for diagnostic purposes. This work is built over the idea that there is additional information in the dynamics of single-trial responses. We introduce a novel way to detect mild cognitive impairment (MCI) from the recordings of auditory ERP responses. Using single trial responses from a cohort of 25 amnestic MCI patients and a group of age-matched controls, we suggest a descriptor capable of encapsulating single-trial (ST) response dynamics for the benefit of early diagnosis. A customized vector quantization (VQ) scheme is first employed to summarize the overall set of ST-responses by means of a small-sized codebook of brain waves that is semantically organized. Each ST-response is then treated as a trajectory that can be encoded as a sequence of code vectors. A subject's set of responses is consequently represented as a histogram of activated code vectors. Discriminating MCI patients from healthy controls is based on the deduced response profiles and carried out by means of a standard machine learning procedure. The novel response representation was found to improve significantly MCI detection with respect to the standard alternative representation obtained via ensemble averaging (13% in terms of sensitivity and 6% in terms of specificity). Hence, the role of cognitive ERPs as biomarker for MCI can be enhanced by adopting the delicate description of our VQ scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent vector beams with involved states of polarization (SOP) are widespread in the literature, having applications in laser processing, super-resolution imaging and particle trapping. We report novel vector beams obtained by transforming a Gaussian beam passing through a biaxial crystal, by means of the conical refraction phenomenon. We analyze both experimentally and theoretically the SOP of the different vector beams generated and demonstrate that the SOP of the input beam can be used to control both the shape and the SOP of the transformed beam. We also identify polarization singularities of such beams for the first time and demonstrate their control by the SOP of the input beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cpfg is a program for simulating and visualizing plant development, based on the theory of L-systems. A special-purpose programming language, used to specify plant models, is an essential feature of cpfg. We review postulates of L-system theory that have influenced the design of this language. We then present the main constructs of this language, and evaluate it from a user's perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A remarkable feature of the carcinogenicity of inorganic arsenic is that while human exposures to high concentrations of inorganic arsenic in drinking water are associated with increases in skin, lung, and bladder cancer, inorganic arsenic has not typically caused tumors in standard laboratory animal test protocols. Inorganic arsenic administered for periods of up to 2 yr to various strains of laboratory mice, including the Swiss CD-1, Swiss CR:NIH(S), C57Bl/6p53(+/-), and C57Bl/6p53(+/+), has not resulted in significant increases in tumor incidence. However, Ng et al. (1999) have reported a 40% tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. In order to investigate the potential role of tissue dosimetry in differential susceptibility to arsenic carcinogenicity, a physiologically based pharmacokinetic (PBPK) model for inorganic arsenic in the rat, hamster, monkey, and human (Mann et al., 1996a, 1996b) was extended to describe the kinetics in the mouse. The PBPK model was parameterized in the mouse using published data from acute exposures of B6C3F1 mice to arsenate, arsenite, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) and validated using data from acute exposures of C57Black mice. Predictions of the acute model were then compared with data from chronic exposures. There was no evidence of changes in the apparent volume of distribution or in the tissue-plasma concentration ratios between acute and chronic exposure that might support the possibility of inducible arsenite efflux. The PBPK model was also used to project tissue dosimetry in the C57Bl/6J study, in comparison with tissue levels in studies having shorter duration but higher arsenic treatment concentrations. The model evaluation indicates that pharmacokinetic factors do not provide an explanation for the difference in outcomes across the various mouse bioassays. Other possible explanations may relate to strain-specific differences, or to the different durations of dosing in each of the mouse studies, given the evidence that inorganic arsenic is likely to be active in the later stages of the carcinogenic process. [Authors]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Few studies compare the variabilities that characterize environmental (EM) and biological monitoring (BM) data. Indeed, comparing their respective variabilities can help to identify the best strategy for evaluating occupational exposure. The objective of this study is to quantify the biological variability associated with 18 bio-indicators currently used in work environments. METHOD: Intra-individual (BV(intra)), inter-individual (BV(inter)), and total biological variability (BV(total)) were quantified using validated physiologically based toxicokinetic (PBTK) models coupled with Monte Carlo simulations. Two environmental exposure profiles with different levels of variability were considered (GSD of 1.5 and 2.0). RESULTS: PBTK models coupled with Monte Carlo simulations were successfully used to predict the biological variability of biological exposure indicators. The predicted values follow a lognormal distribution, characterized by GSD ranging from 1.1 to 2.3. Our results show that there is a link between biological variability and the half-life of bio-indicators, since BV(intra) and BV(total) both decrease as the biological indicator half-lives increase. BV(intra) is always lower than the variability in the air concentrations. On an individual basis, this means that the variability associated with the measurement of biological indicators is always lower than the variability characterizing airborne levels of contaminants. For a group of workers, BM is less variable than EM for bio-indicators with half-lives longer than 10-15 h. CONCLUSION: The variability data obtained in the present study can be useful in the development of BM strategies for exposure assessment and can be used to calculate the number of samples required for guiding industrial hygienists or medical doctors in decision-making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Two or three DNA primes have been used in previous smaller clinical trials, but the number required for optimal priming of viral vectors has never been assessed in adequately powered clinical trials. The EV03/ANRS Vac20 phase I/II trial investigated this issue using the DNA prime/poxvirus NYVAC boost combination, both expressing a common HIV-1 clade C immunogen consisting of Env and Gag-Pol-Nef polypeptide. Methods: 147 healthy volunteers were randomly allocated through 8 European centres to either 3xDNA plus 1xNYVAC (weeks 0, 4, 8 plus 24; n¼74) or to 2xDNA plus 2xNYVAC (weeks 0, 4 plus 20, 24; n¼73), stratified by geographical region and sex. T cell responses were quantified using the interferon g Elispot assay and 8 peptide pools; samples from weeks 0, 26 and 28 (time points for primary immunogenicity endpoint), 48 and 72 were considered for this analysis. Results: 140 of 147 participants were evaluable at weeks 26 and/ or 28. 64/70 (91%) in the 3xDNA arm compared to 56/70 (80%) in the 2xDNA arm developed a T cell response (P¼0.053). 26 (37%) participants of the 3xDNA arm developed a broader T cell response (Env plus at least to one of the Gag, Pol, Nef peptide pools) versus 15 (22%) in the 2xDNA arm (P¼0.047). At week 26, the overall magnitude of responses was also higher in the 3xDNA than in the 2xDNA arm (similar at week 28), with a median of 545 versus 328 SFUs/106 cells at week 26 (P<0.001). Preliminary overall evaluation showed that participants still developed T-cell response at weeks 48 (78%, n¼67) and 72 (70%, n¼66). Conclusion: This large clinical trial demonstrates that optimal priming of poxvirus-based vaccine regimens requires 3 DNA regimens and further confirms that the DNA/NYVAC prime boost vaccine combination is highly immunogenic and induced durable T-cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (BTs). Typically, an estimate of SST is formed from a weighted combination of BTs at a few wavelengths, plus an offset. This paper addresses two questions about the radiative transfer modeling approach to deriving these weighting and offset coefficients. How precisely specified do the coefficients need to be in order to obtain the required SST accuracy (e.g., scatter <0.3 K in week-average SST, bias <0.1 K)? And how precisely is it actually possible to specify them using current forward models? The conclusions are that weighting coefficients can be obtained with adequate precision, while the offset coefficient will often require an empirical adjustment of the order of a few tenths of a kelvin against validation data. Thus, a rational approach to defining retrieval coefficients is one of radiative transfer modeling followed by offset adjustment. The need for this approach is illustrated from experience in defining SST retrieval schemes for operational meteorological satellites. A strategy is described for obtaining the required offset adjustment, and the paper highlights some of the subtler aspects involved with reference to the example of SST retrievals from the imager on the geostationary satellite GOES-8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed energy and water balance models require time-series surfaces of the meteorological variables involved in hydrological processes. Most of the hydrological GIS-based models apply simple interpolation techniques to extrapolate the point scale values registered at weather stations at a watershed scale. In mountainous areas, where the monitoring network ineffectively covers the complex terrain heterogeneity, simple geostatistical methods for spatial interpolation are not always representative enough, and algorithms that explicitly or implicitly account for the features creating strong local gradients in the meteorological variables must be applied. Originally developed as a meteorological pre-processing tool for a complete hydrological model (WiMMed), MeteoMap has become an independent software. The individual interpolation algorithms used to approximate the spatial distribution of each meteorological variable were carefully selected taking into account both, the specific variable being mapped, and the common lack of input data from Mediterranean mountainous areas. They include corrections with height for both rainfall and temperature (Herrero et al., 2007), and topographic corrections for solar radiation (Aguilar et al., 2010). MeteoMap is a GIS-based freeware upon registration. Input data include weather station records and topographic data and the output consists of tables and maps of the meteorological variables at hourly, daily, predefined rainfall event duration or annual scales. It offers its own pre and post-processing tools, including video outlook, map printing and the possibility of exporting the maps to images or ASCII ArcGIS formats. This study presents the friendly user interface of the software and shows some case studies with applications to hydrological modeling.