964 resultados para variance component models
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The educational system in Spain is undergoing a reorganization. At present, high-school graduates who want to enroll at a public university must take a set of examinations Pruebas de Aptitud para el Acceso a la Universidad (PAAU). A "new formula" (components, weights, type of exam,...) for university admission is been discussed. The present paper summarizes part of the research done by the author in her PhD. The context for this thesis is the evaluation of large-scale and complex systems of assessment. The main objectives were: to achieve a deep knowledge of the entire university admissions process in Spain, to discover the main sources of uncertainty and topromote empirical research in a continual improvement of the entire process. Focusing in the suitable statistical models and strategies which allow to high-light the imperfections of the system and reduce them, the paper develops, among other approaches, some applications of multilevel modeling.
Resumo:
The context where the university admissions exams are performed is presented and the main concerns about this exams are outlined and discussed from a statistical point of view. The paper offers an illustration of the use of random coefficient models in the study of educational data. The association between two individual scores (one internal and the other external to the school) and the effect of the school in the external exam is analized by a regression model with random intercept and fixed slope. A variance component model for the analysis of the grading process is also presented. The paper ends with an outline of the main findings and the presentation of some specific proposals to improve and control the equity of the system. Some pedagogic reflections are also included.
Resumo:
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smoothly over time. This nonstationary component is defined as a linear combination of logistic transition functions with time as the transition variable. The appropriate number of transition functions is determined by a sequence of specification tests. For that purpose, a coherent modelling strategy based on statistical inference is presented. It is heavily dependent on Lagrange multiplier type misspecification tests. The tests are easily implemented as they are entirely based on auxiliary regressions. Finite-sample properties of the strategy and tests are examined by simulation. The modelling strategy is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns.
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Genetic and environmental heterogeneity of residual variance of weight traits in Nellore beef cattle
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion (AIC) have been used, based either on the marginal or on the conditional distribution. We show that the marginal AIC is no longer an asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models without random effects. For the conditional AIC, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that leads to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional AIC, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.
Resumo:
Background: In family studies, it is important to evaluate the impact of genes and environmental factors on traits of interest. In particular, the relative influences of both genes and the environment may vary in different strata of the population of interest, such as young and old individuals, or males and females. Methods: In this paper, extensions of the variance components model are used to evaluate heterogeneity in the genetic and environmental variance components due to the effects of sex and age (the cutoff between young and old was 43 yrs). The data analyzed were from 81 Brazilian families (1,675 individuals) of the Baependi Family Heart Study. Results: The models allowing for heterogeneity of variance components by sex suggest that genetic and environmental variances are not different in males and females for diastolic blood pressure, LDL-cholesterol, and HDL-cholesterol, independent of the covariates included in the models. However, for systolic blood pressure, fasting glucose and triglycerides, the evidence for heterogeneity was dependent on the covariates in the model. For instance, in the presence of sex and age covariates, heterogeneity in the genetic variance component was suggested for fasting glucose. But, for systolic blood pressure, there was no evidence of heterogeneity in any of the two variance components. Except for the LDL-cholesterol, models allowing for heterogeneity by age provide evidence of heterogeneity in genetic variance for triglycerides and systolic and diastolic blood pressure. There was evidence of heterogeneity in environmental variance in fasting glucose and HDL-cholesterol. Conclusions: Our results suggest that heterogeneity in trait variances should not be ignored in the design and analyses of gene-finding studies involving these traits, as it may generate additional information about gene effects, and allow the investigation of more sophisticated models such as the model including sex-specific oligogenic variance components.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
This paper focused on four alternatives of analysis of experiments in square lattice as far as the estimation of variance components and some genetic parameters are concerned: 1) intra-block analysis with adjusted treatment and blocks within unadjusted repetitions; 2) lattice analysis as complete randomized blocks; 3) intrablock analysis with unadjusted treatment and blocks within adjusted repetitions; 4) lattice analysis as complete randomized blocks, by utilizing the adjusted means of treatments, obtained from the analysis with recovery of interblock information, having as mean square of the error the mean effective variance of this same analysis with recovery of inter-block information. For the four alternatives of analysis, the estimators and estimates were obtained for the variance components and heritability coefficients. The classification of material was also studied. The present study suggests that for each experiment and depending of the objectives of the analysis, one should observe which alternative of analysis is preferable, mainly in cases where a negative estimate is obtained for the variance component due to effects of blocks within adjusted repetitions.
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.
Resumo:
We study the empirical performance of the classical minimum-variance hedging strategy, comparing several econometric models for estimating hedge ratios of crude oil, gasoline and heating oil crack spreads. Given the great variability and large jumps in both spot and futures prices, considerable care is required when processing the relevant data and accounting for the costs of maintaining and re-balancing the hedge position. We find that the variance reduction produced by all models is statistically and economically indistinguishable from the one-for-one “naïve” hedge. However, minimum-variance hedging models, especially those based on GARCH, generate much greater margin and transaction costs than the naïve hedge. Therefore we encourage hedgers to use a naïve hedging strategy on the crack spread bundles now offered by the exchange; this strategy is the cheapest and easiest to implement. Our conclusion contradicts the majority of the existing literature, which favours the implementation of GARCH-based hedging strategies.