954 resultados para variable rate application
Resumo:
The aim of this study was to develop and evaluate a variable dose rate application of herbicides using an online electronic control based system with optical sensors for weed detection in forested areas. The proposed concept was to apply a basic dose on 100% of the area (aiming to control small weeds) and to apply a complementary patch-spraying dose only on areas with higher weed infestation. For that purpose, a conventional spray boom was adjusted to apply 40% of the herbicide dose on the full area and the optical sensors were used to control the application of the complementary dose (60%) only on areas with higher infestation. The results showed that the system performed adequately. Field applications presented herbicide savings around 20 to 30%, with a similar weed control performance as compared to the full dose application on 100% of the area.
Resumo:
The objective was to develop and test a procedure for applying variable rates of fertilizers and evaluate yield response in coffee (Coffea arabica L.) with regard to the application of phosphorus and potassium. The work was conducted during the 2004 season in a 6.4 ha field located in central Sao Paulo state. Two treatments were applied with alternating strips of fixed and variable rates during the whole season: one following the fertilizing procedures recommended locally, and the other based on a grid soil sampling. A prototype pneumatic fertilizer applicator was used, carrying two conveyor belts, one for each row. Harvesting was done with a commercial harvester equipped with a customized volumetric yield monitor, separating the two treatments. Data were analyzed based on geostatistics, correlations and regressions. The procedure showed to be feasible and effective. The area that received fertilizer applications at a variable rate showed a 34% yield increase compared to the area that received a fixed rate. The variable rate fertilizer resulted in a savings of 23% in phosphate fertilizer and a 13% increase in potassium fertilizer, when compared to fixed rate fertilizer. Yield in 2005, the year after the variable rate treatments, still presented residual effect from treatments carried out during the previous cycle.
Resumo:
Generally, in tropical and subtropical agroecosystems, the efficiency of nitrogen (N) fertilization is low, inducing a temporal variability of crop yield, economic losses, and environmental impacts. Variable-rate N fertilization (VRF), based on optical spectrometry crop sensors, could increase the N use efficiency (NUE). The objective of this study was to evaluate the corn grain yield and N fertilization efficiency under VRF determined by an optical sensor in comparison to the traditional single-application N fertilization (TSF). With this purpose, three experiments with no-tillage corn were carried out in the 2008/09 and 2010/11 growing seasons on a Hapludox in South Brazil, in a completely randomized design, at three different sites that were analyzed separately. The following crop properties were evaluated: aboveground dry matter production and quantity of N uptake at corn flowering, grain yield, and vegetation index determined by an N-Sensor® ALS optical sensor. Across the sites, the corn N fertilizer had a positive effect on corn N uptake, resulting in increased corn dry matter and grain yield. However, N fertilization induced lower increases of corn grain yield at site 2, where there was a severe drought during the growing period. The VRF defined by the optical crop sensor increased the apparent N recovery (NRE) and agronomic efficiency of N (NAE) compared to the traditional fertilizer strategy. In the average of sites 1 and 3, which were not affected by drought, VRF promoted an increase of 28.0 and 41.3 % in NAE and NRE, respectively. Despite these results, no increases in corn grain yield were observed by the use of VRF compared to TSF.
Resumo:
The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.
Resumo:
ABSTRACT The efficiency of nitrogen fertilizer in corn is usually low, negatively affecting plant nutrition, the economic return, and the environment. In this context, a variable rate of nitrogen, prescribed by crop sensors, has been proposed as an alternative to the uniform rate of nitrogen traditionally used by farmers. This study tested the hypothesis that variable rate of nitrogen, prescribed by optical sensor, increases the nitrogen use efficiency and grain yield as compared to uniform rate of nitrogen. The following treatments were evaluated: 0; 70; 140; and 210 kg ha-1 under uniform rate of nitrogen, and 140 kg ha -1 under variable rate of nitrogen. The nitrogen source was urea applied on the soil surface using a distributor equipped with the crop sensor. In this study, the grain yield ranged from 10.2 to 15.5 Mg ha-1, with linear response to nitrogen rates. The variable rate of nitrogen increased by 11.8 and 32.6% the nitrogen uptake and nitrogen use efficiency, respectively, compared to the uniform rate of nitrogen. However, no significant increase in grain yield was observed, indicating that the major benefit of the variable rate of nitrogen was reducing the risk of environmental impact of fertilizer.
Resumo:
The Scottish Parliament has the authority to make a balanced-budget expansion or contraction in public expenditure, funded by corresponding local changes in the basic rate of income tax of up to 3p in the pound. This fiscal adjustment is known as the Scottish Variable Rate of income tax, though it has never, as yet, been used. In this paper we attempt to identify the impact on aggregate economic activity in Scotland of implementing these devolved fiscal powers. This is achieved through theoretical analysis and simulation using a Computable General Equilibrium (CGE) model for Scotland. This analysis generalises the conventional Keynesian model so that negative balanced-budget multipliers values are possible, reflecting a regional “inverted Haavelmo effect”. Key parameters determining the aggregate economic impact are the extent to which the Scottish Government create local amenities valuable to the Scottish population and the extent to which this is incorporated into local wage bargaining.
Resumo:
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
Resumo:
Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.
Resumo:
Precision Viticulture (PV) is a concept that is beginning to have an impact on the wine-growing sector. Its practical implementation is dependant on various technological developments: crop sensors and yield monitors, local and remote sensors, Global Positioning Systems (GPS), VRA (Variable-Rate Application) equipment and machinery, Geographic Information Systems (GIS) and systems for data analysis and interpretation. This paper reviews a number of research lines related to PV. These areas of research have focused on four very specific fields: 1) quantification and evaluation of within-field variability, 2) delineation of zones of differential treatment at parcel level, based on the analysis and interpretation of this variability, 3) development of Variable-Rate Technologies (VRT) and, finally, 4) evaluation of the opportunities for site-specific vineyard management. Research in these fields should allow winegrowers and enologists to know and understand why yield variability exists within the same parcel, what the causes of this variability are, how the yield and its quality are interrelated and, if spatial variability exists, whether site-specific vineyard management is justifiable on a technical and economic basis.
Resumo:
The objective of this study was to model mathematically and to simulate the dynamic behavior of an auger-type fertilizer applicator (AFA) in order to use the variable-rate application (VRA) and reduce the coefficient of variation (CV) of the application, proposing an angular speed controller θ' for the motor drive shaft. The input model was θ' and the response was the fertilizer mass flow, due to the construction, density of fertilizer, fill factor and the end position of the auger. The model was used to simulate a control system in open loop, with an electric drive for AFA using an armature voltage (V A) controller. By introducing a sinusoidal excitation signal in V A with amplitude and delay phase optimized and varying θ' during an operation cycle, it is obtained a reduction of 29.8% in the CV (constant V A) to 11.4%. The development of the mathematical model was a first step towards the introduction of electric drive systems and closed loop control for the implementation of AFA with low CV in VRA.
Resumo:
Understanding spatial distribution of weeds in the crop enables to perform localized herbicide applications, increasing the technical and economic efficiency of operations and reducing environmental impacts. This work aimed to characterize the spatial and phytosociological variability of weeds occurring in soybean commercial field. It was conducted in an agricultural area located at the municipality of Boa Vista das Missões - RS, during the 2010/2011 harvest season. The area, that had been managed under no-tillage with soybean monoculture (summer) for five years, was divided in regular squares of 50 x 50 m (0.25 ha), totalizing 356 points. For species identification, 0.5 x 0.5 m sample squares were used. During the survey, 1,739 individuals were identified, distributed in 19 species of 13 families. The weed species Cardiospermum halicacabum, Digitaria horizontalis, Urochloa plantaginea and Raphanus raphanistrum showed the highest population variation in the area; however, only C. halicacabum, U. plantaginea and R. raphanistrum stood out based on the Importance Index Value (IVI). Localized management strategies considering the spatial variability of weed species placed in the Magnoliopsidas and Liliopsidas group show a high potential for use in soybean crop. The results show that the sampling method through regular grid was capable of characterizing the occurrence, population density and spatial variability of weed species in soybean crop.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nitrogen management has been intensively studied on several crops and recently associated with variable rate on-the-go application based on crop sensors. Such studies are scarce for sugarcane and as a biofuel crop the energy input matters, seeking high positive energy balance production and low carbon emission on the whole production system. This article presents the procedure and shows the first results obtained using a nitrogen and biomass sensor (N-Sensor (TM) ALS, Yara International ASA) to indicate the nitrogen application demands of commercial sugarcane fields. Eight commercial fields from one sugar mill in the state of Sao Paulo, Brazil, varying from 15 to 25 ha in size, were monitored. Conditions varied from sandy to heavy soils and the previous harvesting occurred in May and October 2009, including first, second, and third ratoon stages. Each field was scanned with the sensor three times during the season (at 0.2, 0.4, and 0.6 m stem height), followed by tissue sampling for biomass and nitrogen uptake at ten spots inside the area, guided by the different values shown by the sensor. The results showed a high correlation between sensor values and sugarcane biomass and nitrogen uptake, thereby supporting the potential use of this technology to develop algorithms to manage variable rate application of nitrogen for sugarcane.