990 resultados para variable optical attenuator
Resumo:
A thermo-optic variable optical attenuator (VOA) based on a Mach-Zehnder interferometer and multimode-interference coupler is fabricated. Not a single-mode but a multimode waveguide is used as the input and output structures of the optical field, which greatly reduces the coupling loss of the VOA with a normal single-mode fiber. The insertion loss of the fabricated VOA is 2.52 to 2.82 dB at the wavelength of 1520 to 1570 nm. The polarization dependent loss is 0.28 to 0.45 dB at the same wavelength range. Its maximum attenuation range is up to 26.3 dB when its power consumption is 369 mW. The response frequency of the fabricated VOA is about 10 kHz. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A thermo-optic Mach-Zehnder (MZ) variable optical attenuator based on silicon waveguides with a large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. Multimode interferometers were used as power splitters and combiners in the MZ structure. In order to achieve a smooth interface, anisotropic chemical etching of silicon was used to fabricate the waveguides. Isolating grooves were introduced to reduce power consumption and device length. The device has a low power consumption of 210 mW and a response time of 50 mus. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Two types of silicon-on-insulator thermo-optic variable optical attenuators (VOAs) based on a Mach-Zehnder interferometer and a multimode-interference coupler are fabricated, one with thermal isolating grooves to improve heating efficiency and the other without Comparison of optical and electrical properties, such as insertion losses, the maximum attenuation levels and the corresponding power consumptions, and the response times, is carried out between the two types of VOAs. The comparison results Indicate that use of thermal isolating grooves leads to better values for most characteristics and is an effective way to improve the performance of Mach-Zehnder interferometer-type thermo-optic devices. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
An electro-optic variable optical attenuator in silicon-on-insulator is designed and fabricated. A series Structure is used to improve the device efficiency Compared to the attenuator in the single p-i-n diode Structure in the same modulating length, the attenuation range of the device in the series structure improves 2-3 times in the same injecting current density, while the insertion loss is not affected. The maximum dynamic attenuation of the device is greater than 30 dB. The response frequency is obtained to be about 2 MHz.
Resumo:
A thermo-optic variable optical attenuator based on a multimode interference coupler principle is fabricated. The propagation loss of the fabricated device is 1.6 to 3.8 dB at the wavelength range 1510 to 1610 nm, which is very near the calculated value (1.2 dB) by the finite difference beam propagation method. The maximum power consumption is 363 mW and the dynamic attenuation range is 0 to 26 dB. The response frequency of the fabricated attenuator is about 10 kHz. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A SOI thenno-optic variable optical attenuator with U-grooves based on a multimode interference coupler principle is fabricated. The dynamic attenuation range is 0 to 29 dB; at the wavelength range between 1510 nm and 1610nm, and the maximum power consumption is only l30mW. Compared to the variable optical attenuator without U-groove, the maximum power consumption decreases more than 230mW
Resumo:
A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.
Resumo:
A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.
Resumo:
A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.
Resumo:
A thermo-optic variable optical attenuator module composed of a silicon-on-insulator attenuator chip and driving circuit was designed and fabricated. The module exhibited a maximum attenuation of 21.8 dB and a response time of 10 mu s. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
SOI (silicon-on-insulator) is a new material with a lot of important performances such as large index difference, low transmission loss. Fabrication processes for SOI based optoelectronic devices are compatible with conventional IC processes. Having the potential of OEIC monolithic integration, SOI based optoelectronic devices have shown many good characteristics and become more and more attractive recently. In this paper, the recent progresses of SOI waveguide devices in our research group are presented. By highly effective numerical simulation, the single mode conditions for SOI rib waveguides with rectangular and trapezoidal cross-section were accurately investigated. Using both chemical anisotropic wet etching and plasma dry etching techniques, SOI single mode rib waveguide, MMI coupler, VOA (variable optical attenuator), 2X2 thermal-optical switch were successfully designed and fabricated. Based on these, 4X4 and 8X8 SOI optical waveguide integrated switch matrixes are demonstrated for the first time.
Resumo:
Origin of polarization sensitivity of photonic wire waveguides (PWWs) is analysed and the effective refractive indices of two different polarization states are calculated by the three-dimensional full-vector beam propagation method. We find that PWWs are polarization insensitive if the distribution of its refractive index is uniform and the cross section is square. An MRR based on such a polarization-insensitive PWW is fabricated on an 8-inch silicon-on-insulator wafer using 248-nm deep ultraviolet lithography and reactive ion etching. The quasi-TE mode is resonant at 1542.25 nm and 1558.90 nm, and the quasi-TM mode is resonant at 1542.12 nm and 1558.94 nm. The corresponding polarization shift is 0.13 nm at the shorter wavelength and 0.04 nm at the longer wavelength. Thus the fabricated device is polarization independent. The extinction ratio is larger than 10 dB. The 3 dB bandwidth is about 2.5 nm and the Qvalue is about 620 at 1558.90 nm.